
Robotics System Toolbox™

Reference

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ Reference
© COPYRIGHT 2015–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2015 Online only New for Version 1.0 (R2015a)
September 2015 Online only Revised for Version 1.1 (R2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 1.2 (R2016a)
September 2016 Online only Revised for Version 1.3 (R2016b)
March 2017 Online only Revised for Version 1.4 (R2017a)
September 2017 Online only Revised for Version 1.5 (R2017b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Classes — Alphabetical List
1

Functions — Alphabetical List
2

Methods — Alphabetical List
3

Blocks — Alphabetical List
4

iii

Contents

Classes — Alphabetical List

1

BagSelection
Create rosbag selection

Description
The BagSelection object is an index of the messages within a rosbag. You can use it to
extract message data from a rosbag, select messages based on specific criteria, or create a
timeseries of the message properties.

Creation

Syntax
bag = rosbag(filename)

bagsel = select(bag)

Description

bag = rosbag(filename) creates an indexable BagSelection object, bag, that
contains all the message indexes from the rosbag located at path filename. To access
the data, you can call readMessages or timeseries to extract relevant data.

See rosbag for other syntaxes.

bagsel = select(bag) returns an object, bagsel, that contains all of the messages in
the BagSelection object, bag

This function does not change the contents of the original BagSelection object. It
returns a new object that contains the specified message selection.

See select for other syntaxes. You can specify certain parameters to filter by such as
time and topic.

1 Classes — Alphabetical List

1-2

Properties
FilePath — Absolute path to the rosbag file
character vector

This property is read-only.

Absolute path to the rosbag file, specified as a character vector.
Data Types: char

StartTime — Timestamp of the first message in the selection
scalar

This property is read-only.

Timestamp of the first message in the selection, specified as a scalar in seconds.
Data Types: double

EndTime — Timestamp of the last message in the selection
scalar

This property is read-only.

Timestamp of the last message in the selection, specified as a scalar in seconds.
Data Types: double

NumMessages — Number of messages in the selection
scalar

This property is read-only.

Number of messages in the selection, specified as a scalar. When you first load a rosbag,
this property contains the number of messages in the rosbag. Once you select a subset of
messages with select, the property shows the number of messages in this selection.
Data Types: double

AvailableTopics — Table of topics in the selection
table

This property is read-only.

 BagSelection

1-3

Table of topics in the selection, specified as a table. Each row in the table lists one topic,
the number of messages for this topic, the message type, and the definition of the type.
For example:

 NumMessages MessageType MessageDefinition
 ___________ _________________ ___

 /odom 99 nav_msgs/Odometry '# This represents an estimate of a position and velocity in …'

Data Types: table

MessageList — List of messages in the selection
table

This property is read-only.

List of messages in the selection, specified as a table. Each row in the table lists one
message.
Data Types: table

Object Functions
readMessages Read messages from rosbag
select Select subset of messages in rosbag
timeseries Creates a time series object for selected message properties

Examples

Create rosbag Selection Using BagSelection Object

Create a BagSelection object from a rosbag log file and parse out specific messages
based on the selected criteria.

Set the path to the logfile

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');

Create a BagSelection object of all the messages in the log file.

1 Classes — Alphabetical List

1-4

bagMsgs = robotics.ros.Bag.parse(filepath);

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs, 'Time', ...
 [bagMsgs.StartTime bagMsgs.StartTime + 1], 'Topic', '/odom');

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2);

Return certain message properties as a time series.

ts = timeseries(bagMsgs2, 'Pose.Pose.Position.X', ...
 'Twist.Twist.Angular.Y');

• “Work with rosbag Logfiles”

See Also
readMessages | select | timeseries

Topics
“Work with rosbag Logfiles”
“ROS Log Files (rosbags)”

Introduced in R2015a

 BagSelection

1-5

Core
Create ROS Core

Description
The ROS Core encompasses many key components and nodes that are essential for the
ROS network. You must have exactly one ROS core running in the ROS network for
nodes to communicate. Using this class allows the creation of a ROS core in MATLAB®.
Once the core is created, you can connect to it by calling rosinit or
robotics.ros.Node.

Creation

Syntax
core = robotics.ros.Core
core = robotics.ros.Core(port)

Description

core = robotics.ros.Core returns a Core object and starts a ROS core in MATLAB.
This ROS core has a default port of 11311. MATLAB only allows the creation of one core
on any given port and displays an error if another core is detected on the same port.

core = robotics.ros.Core(port) starts a ROS core at the specified port, port.

Properties
Port — Network port at which the ROS master is listening
11311 (default) | scalar

This property is read-only.

1 Classes — Alphabetical List

1-6

Network port at which the ROS master is listening, returned as a scalar.

MasterURI — The URI on which the ROS master can be reached
'http://<HOSTNAME>:11311' (default) | character vector

This property is read-only.

The URI on which the ROS master can be reached, returned as a character vector. The
MasterURI is constructed based on the host name of your computer. If your host name is
not valid, the IP address of your first network interface is used.

Examples

Create ROS Core

Create ROS Core on localhost and default port 11311.

core = robotics.ros.Core;

Clear the ROS core to shut down th ROS network

clear('core')

Create ROS Core On Specific Port

Create ROS Core on localhost and port 12000.

core = robotics.ros.Core(12000);

Clear the ROS core to shut down th ROS network

clear('core')

• “Connect to a ROS Network”

See Also
Node | rosinit

 Core

1-7

Topics
“Connect to a ROS Network”
“ROS Network Setup”

External Websites
ROS Core

Introduced in R2015a

1 Classes — Alphabetical List

1-8

http://wiki.ros.org/roscore

CompressedImage
Create compressed image message

Description
The CompressedImage object is an implementation of the sensor_msgs/
CompressedImage message type in ROS. The object contains the compressed image and
meta-information about the message. You can create blank CompressedImage messages
and populate them with data, or subscribe to image messages over the ROS network. To
convert the image to a MATLAB image, use the readImage function.

Only images that are sent through the ROS Image Transport package are supported for
conversion to MATLAB images.

Creation

Syntax
msg = rosmessage('sensor_msgs/CompressedImage')

Description

msg = rosmessage('sensor_msgs/CompressedImage') creates an empty
CompressedImage object. To specify image data, use the msg.Data property. You can
also get these image messages off the ROS network using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

 CompressedImage

1-9

http://wiki.ros.org/image_transport

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Format — Image format
character vector

Image format, specified as a character vector.
Example: 'bgr8; jpeg compressed bgr8'

Data — Image data
uint8 array

Image data, specified as a uint8 array.

Object Functions
readImage Convert ROS image data into MATLAB image

Examples

Read and Write CompressedImage Messages

Read and write a sample ROS CompressedImage message by converting it

Load sample ROS messages and inspect the image message. imgcomp is a sample ROS
CompressedImage message object.

exampleHelperROSLoadMessages
imgcomp

1 Classes — Alphabetical List

1-10

imgcomp =

 ROS CompressedImage message with properties:

 MessageType: 'sensor_msgs/CompressedImage'
 Header: [1x1 Header]
 Format: 'bgr8; jpeg compressed bgr8'
 Data: [30376x1 uint8]

 Use showdetails to show the contents of the message

Create a MATLAB image from the CompressedImage message using readImage and
display it.

I = readImage(imgcomp);
imshow(I)

 CompressedImage

1-11

Create Blank Compressed Image Message

compImg = rosmessage('sensor_msgs/CompressedImage')

compImg =

 ROS CompressedImage message with properties:

 MessageType: 'sensor_msgs/CompressedImage'
 Header: [1x1 Header]
 Format: ''

1 Classes — Alphabetical List

1-12

 Data: [0x1 uint8]

 Use showdetails to show the contents of the message

• “Work with Specialized ROS Messages”

See Also
readImage | rosmessage | rossubscriber

Topics
“Work with Specialized ROS Messages”

Introduced in R2015a

 CompressedImage

1-13

Image
Create image message

Description
The Image object is an implementation of the sensor_msgs/Image message type in
ROS. The object contains the image and meta-information about the message. You can
create blank Image messages and populate them with data, or subscribe to image
messages over the ROS network. To convert the image to a MATLAB image, use the
readImage function.

Creation

Syntax
msg = rosmessage('sensor_msgs/Image')

Description

msg = rosmessage('sensor_msgs/Image') creates an empty Image object. To
specify image data, use the msg.Data property. You can also get these image messages
off the ROS network using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.

1 Classes — Alphabetical List

1-14

Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Height — Image height in pixels
scalar

Image height in pixels, specified as a scalar.

Width — Image width in pixels
scalar

Image width in pixels, specified as a scalar.

Encoding — Image encoding
character vector

Image encoding, specified as a character vector.
Example: 'rgb8'

IsBigendian — Image byte sequence
true | false

Image byte sequence, specified as a true or false.

• true —Big endian sequence. Stores the most significant byte in the smallest address.
• false —Little endian sequence. Stores the least significant byte in the smallest

address.

The Big endian sequence stores the most significant byte in the smallest address. The
Little endian sequence stores the least significant byte in the smallest address.

Step — Full row length in bytes
integer

 Image

1-15

Full row length in bytes, specified as an integer. This length depends on the color depth
and the pixel width of the image. For example, an RGB image has 3 bytes per pixel, so an
image with width 640 has a step of 1920.

Data — Image data
uint8 array

Image data, specified as a uint8 array.

Object Functions
readImage Convert ROS image data into MATLAB image
writeImage Write MATLAB image to ROS image message

Examples

Read and Write Image Messages

Read and write a sample ROS Image message by converting it to a MATLAB image.
Then, convert a MATLAB® image to ROS message.

Load sample ROS messages and inspect the image message data. img is a sample ROS
Image message object.

exampleHelperROSLoadMessages
img

img =

 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 480
 Width: 640
 Encoding: 'rgb8'
 IsBigendian: 0
 Step: 1920
 Data: [921600x1 uint8]

1 Classes — Alphabetical List

1-16

 Use showdetails to show the contents of the message

Create a MATLAB image from the Image message using readImage and display it.

I = readImage(img);
imshow(I)

Create a ROS Image message from a MATLAB image.

imgMsg = rosmessage('sensor_msgs/Image');
imgMsg.Encoding = 'rgb8'; % Specifies Image Encoding Type

 Image

1-17

writeImage(imgMsg,I)
imgMsg

imgMsg =

 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 480
 Width: 640
 Encoding: 'rgb8'
 IsBigendian: 0
 Step: 1920
 Data: [921600x1 uint8]

 Use showdetails to show the contents of the message

Create Blank Image Message

msg = rosmessage('sensor_msgs/Image')

msg =

 ROS Image message with properties:

 MessageType: 'sensor_msgs/Image'
 Header: [1x1 Header]
 Height: 0
 Width: 0
 Encoding: ''
 IsBigendian: 0
 Step: 0
 Data: [0x1 uint8]

 Use showdetails to show the contents of the message

• “Work with Specialized ROS Messages”

1 Classes — Alphabetical List

1-18

See Also
readImage | rosmessage | rossubscriber | writeImage

Topics
“Work with Specialized ROS Messages”

Introduced in R2015a

 Image

1-19

LaserScan
Create laser scan message

Description
The LaserScan object is an implementation of the sensor_msgs/LaserScan message
type in ROS. The object contains meta-information about the message and the laser scan
data. You can extract the ranges and angles using the Ranges property and the
readScanAngles function. To access points in Cartesian coordinates, use
readCartesian.

You can also convert this to a lidarScan object to use with other robotics algorithms
such as matchScans, robotics.VectorFieldHistogram, or
robotics.MonteCarloLocalization.

Creation

Syntax
scan = rosmessage('sensor_msgs/LaserScan')

Description

scan = rosmessage('sensor_msgs/LaserScan') creates an empty LaserScan
object. You can specify scan info and data using the properties, or you can get these
messages off a ROS network using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

1 Classes — Alphabetical List

1-20

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId. Timestamp relates to
the acquisition time of the first ray in the scan.

AngleMin — Minimum angle of range data
scalar

Minimum angle of range data, specified as a scalar in radians. Positive angles are
measured from the forward direction of the robot.

AngleMax — Maximum angle of range data
scalar

Maximum angle of range data, specified as a scalar in radians. Positive angles are
measured from the forward direction of the robot.

AngleIncrement — Angle increment of range data
scalar

Angle increment of range data, specified as a scalar in radians.

TimeIncrement — Time between individual range data points in seconds
scalar

Time between individual range data points in seconds, specified as a scalar.

ScanTime — Time to complete a full scan in seconds
scalar

Time to complete a full scan in seconds, specified as a scalar.

 LaserScan

1-21

RangeMin — Minimum valid range value
scalar

Minimum valid range value, specified as a scalar.

RangeMax — Maximum valid range value
scalar

Maximum valid range value, specified as a scalar.

Ranges — Range readings from laser scan
vector

Range readings from laser scan, specified as a vector. To get the corresponding angles,
use readScanAngles.

Intensities — Intensity values from range readings
vector

Intensity values from range readings, specified as a vector. If no valid intensity readings
are found, this property is empty.

Object Functions
lidarScan Creat object for storing 2-D lidar scan
plot Display laser or lidar scan readings
readCartesian Read laser scan ranges in Cartesian coordinates
readScanAngles Return scan angles for laser scan range readings

Examples

Inspect Sample Laser Scan Message

Load, inspect, and display a sample laser scan message.

Create sample messages and inspect the laser scan message data. scan is a sample ROS
LaserScan message object.

1 Classes — Alphabetical List

1-22

exampleHelperROSLoadMessages
scan

scan =

 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: -0.5467
 AngleMax: 0.5467
 AngleIncrement: 0.0017
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

Get ranges and angles from the object properties. Check that the ranges and angles are
the same size.

ranges = scan.Ranges;
angles = scan.readScanAngles;
size(ranges)
size(angles)

ans =

 640 1

ans =

 640 1

Display laser scan data in a figure using plot.

plot(scan)

 LaserScan

1-23

Create Empty LaserScan Message

scan = rosmessage('sensor_msgs/LaserScan')

scan =

 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: 0

1 Classes — Alphabetical List

1-24

 AngleMax: 0
 AngleIncrement: 0
 TimeIncrement: 0
 ScanTime: 0
 RangeMin: 0
 RangeMax: 0
 Ranges: [0x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

• “Work with Specialized ROS Messages”

See Also
lidarScan | plot | readCartesian | readScanAngles | rosmessage |
rossubscriber | showdetails

Topics
“Work with Specialized ROS Messages”

Introduced in R2016a

 LaserScan

1-25

Node
Start ROS node and connect to ROS master

Description
The robotics.ros.Node object represents a ROS node in the ROS network. The object
enables you to communicate with the rest of the ROS network. You must create a node
before you can use other ROS functionality, such as publishers, subscribers, and services.

You can create a ROS node using the rosinit function, or by calling
robotics.ros.Node:

• rosinit — Creates a single ROS node in MATLAB. You can specify an existing ROS
master, or the function creates one for you. The Node object is not visible.

• robotics.ros.Node— Creates multiple ROS nodes for use on the same ROS
network in MATLAB.

Creation

Syntax
N = robotics.ros.Node(Name)
N = robotics.ros.Node(Name,Host)
N = robotics.ros.Node(Name,Host,Port)
N = robotics.ros.Node(Name,MasterURI,Port)
N = robotics.ros.Node(___ ,'NodeHost',HostName)

Description

N = robotics.ros.Node(Name) initializes the ROS node with Name and tries to
connect to the ROS master at default URI, http://localhost:11311.

1 Classes — Alphabetical List

1-26

N = robotics.ros.Node(Name,Host) tries to connect to the ROS master at the
specified IP address or host name, Host using the default port number, 11311.

N = robotics.ros.Node(Name,Host,Port)tries to connect to the ROS master with
port number, Port.

N = robotics.ros.Node(Name,MasterURI,Port) tries to connect to the ROS
master at the specified IP address, MasterURI.

N = robotics.ros.Node(___ ,'NodeHost',HostName) specifies the IP address or
host name that the node uses to advertise itself to the ROS network. Examples include
'192.168.1.1' or 'comp-home'. You can use any of the arguments from the previous
syntaxes.

Properties
Name — Name of the node
character vector

Name of the node, specified as a character vector. The node name must be a valid ROS
graph name. See ROS Names.

MasterURI — URI of the ROS master
character vector

URI of the ROS master, specified as a character vector. The node is connected to the ROS
master with the given URI.

NodeURI — URI for the node
character vector

URI for the node, specified as a character vector. The node uses this URI to advertise
itself on the ROS network for others to connect to it.

CurrentTime — Current ROS network time
Time object

Current ROS network time, specified as a Time object. For more information, see
rostime.

 Node

1-27

http://wiki.ros.org/Names

Examples

Create Multiple ROS Nodes

Create multiple ROS nodes. Use the Node object with publishers, subscribers, and other
ROS functionality to specify with which node you are connecting to.

Create a ROS master.

master = robotics.ros.Core;

Initialize multiple nodes.

node1 = robotics.ros.Node('/test_node_1');
node2 = robotics.ros.Node('/test_node_2');

Use these nodes to perform separate operations and send separate messages. A message
published by node1 can be accessed by a subscriber running in node2.

pub = robotics.ros.Publisher(node1,'/chatter','std_msgs/String');
sub = robotics.ros.Subscriber(node2,'/chatter','std_msgs/String');

msg = rosmessage('std_msgs/String');
msg.Data = 'Message from Node 1';

Send a message from node1. The subscriber attached to node2 will receive the message.

send(pub,msg) % Sent from node 1
pause(1) % Wait for message to update
sub.LatestMessage

ans =

 ROS String message with properties:

 MessageType: 'std_msgs/String'
 Data: 'Message from Node 1'

 Use showdetails to show the contents of the message

1 Classes — Alphabetical List

1-28

Clear the ROS network of publisher, subscriber, and nodes. Delete the Core object to
shut down the ROS master.

clear('pub','sub','node1','node2')
clear('master')

Connect to Multiple ROS Masters

Connecting to multiple ROS masters is possible using MATLAB®. These seperate ROS
masters do not share information and must have different port numbers. Connect ROS
nodes to each master based on how you want to separate information across the network.

Create two ROS masters on different ports.

m1 = robotics.ros.Core; % Default port of 11311
m2 = robotics.ros.Core(12000);

Connect separate ROS nodes to each ROS master.

node1 = robotics.ros.Node('/test_node_1','localhost');
node2 = robotics.ros.Node('/test_node_2','localhost',12000);

Clear the ROS nodes. Shut down the ROS masters.

clear('node1','node2')
clear('m1','m2')

See Also
rosinit | rosshutdown

Topics
“ROS Network Setup”

External Websites
ROS Nodes

Introduced in R2015a

 Node

1-29

http://wiki.ros.org/Nodes

OccupancyGrid
Create occupancy grid message

Description
The OccupancyGrid object is an implementation of the nav_msgs/OccupancyGrid
message type in ROS. The object contains meta-information about the message and the
occupancy grid data. To create a robotics.BinaryOccupancyGrid object from a ROS
message, use readBinaryOccupancyGrid.

Note See robotics.OccupancyGrid for the MATLAB representation of occupancy
grids independent of ROS.

Creation

Syntax
msg = rosmessage('nav_msgs/OccupancyGrid');

Description

msg = rosmessage('nav_msgs/OccupancyGrid'); creates an empty
OccupancyGrid object. To specify map information and data, use the map.Info and
msg.Data properties. You can also get the occupancy grid messages off the ROS network
using rossubscriber.

Properties
MessageType — Message type of ROS message
character vector

1 Classes — Alphabetical List

1-30

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Info — Information about the map
MapMetaData object

Information about the map, specified as a MapMetaData object. It contains the width,
height, resolution, and origin of the map.

Data — Map data
vector

Map data, specified as a vector. The vector is all the occupancy data from each grid
location in a single 1-D array.

Object Functions
readBinaryOccupancyGrid Read binary occupancy grid
writeBinaryOccupancyGrid Write values from grid to ROS message

Examples

Create Occupancy Grid from 2-D Map

Load two maps, simpleMap and complexMap, as logical matrices. Use whos to show the
map.

 OccupancyGrid

1-31

filePath = fullfile(fileparts(which('PathPlanningExample')),'data','exampleMaps.mat');
load(filePath)
whos *Map*

 Name Size Bytes Class Attributes

 complexMap 41x52 2132 logical
 simpleMap 26x27 702 logical
 ternaryMap 501x501 2008008 double

Create a ROS message from simpleMap using a BinaryOccupancyGrid object. Write
the OccupancyGrid message using writeBinaryOccupancyGrid.

bogMap = robotics.BinaryOccupancyGrid(double(simpleMap));
mapMsg = rosmessage('nav_msgs/OccupancyGrid');
writeBinaryOccupancyGrid(mapMsg,bogMap)
mapMsg

mapMsg =

 ROS OccupancyGrid message with properties:

 MessageType: 'nav_msgs/OccupancyGrid'
 Header: [1x1 Header]
 Info: [1x1 MapMetaData]
 Data: [702x1 int8]

 Use showdetails to show the contents of the message

Use readBinaryOccupancyGrid to convert the ROS message to a
BinaryOccupancyGrid object. Use the object function show to display the map.

bogMap2 = readBinaryOccupancyGrid(mapMsg);
show(bogMap2);

1 Classes — Alphabetical List

1-32

See Also
readBinaryOccupancyGrid | robotics.BinaryOccupancyGrid | rosmessage |
rossubscriber | writeBinaryOccupancyGrid

Topics
“Occupancy Grids”

Introduced in R2015a

 OccupancyGrid

1-33

PointCloud2
Access point cloud messages

Description
The PointCloud2 object is an implementation of the sensor_msgs/PointCloud2
message type in ROS. The object contains meta-information about the message and the
point cloud data. To access the actual data, use readXYZ to get the point coordinates and
readRGB to get the color information, if available.

Creation

Syntax
ptcloud = rosmessage('sensor_msgs/PointCloud2')

Description

ptcloud = rosmessage('sensor_msgs/PointCloud2') creates an empty
PointCloud2 object. To specify point cloud data, use the ptcloud.Data property. You
can also get point cloud data messages off the ROS network using rossubscriber.

Properties
PreserveStructureOnRead — Preserve the shape of point cloud matrix
false (default) | true

This property is read-only.

Preserve the shape of point cloud matrix, specified as flase or true. When the property
is true, the output data from readXYZ and readRGB are returned as matrices instead of
vectors.

1 Classes — Alphabetical List

1-34

MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

Height — Point cloud height in pixels
integer

Point cloud height in pixels, specified as an integer.

Width — Point cloud width in pixels
integer

Point cloud width in pixels, specified as an integer.

IsBigendian — Image byte sequence
true | false

Image byte sequence, specified as a true or false.

• true —Big endian sequence. Stores the most significant byte in the smallest address.
• false —Little endian sequence. Stores the least significant byte in the smallest

address.

The Big endian sequence stores the most significant byte in the smallest address. The
Little endian sequence stores the least significant byte in the smallest address.

PointStep — Length of a point in bytes
integer

Length of a point in bytes, specified as an integer.

 PointCloud2

1-35

RowStep — Full row length in bytes
integer

Full row length in bytes, specified as an integer. The row length equals the PointStep
property multiplied by the Width property.

Data — Point cloud data
uint8 array

Point cloud data, specified as a uint8 array. To access the data, use the “Object
Functions” on page 1-36.

Object Functions
readAllFieldNames Get all available field names from ROS point cloud
readField Read point cloud data based on field name
readRGB Extract RGB values from point cloud data
readXYZ Extract XYZ coordinates from point cloud data
scatter3 Display point cloud in scatter plot
showdetails Display all ROS message contents

Examples

Inspect Point Cloud Image

Access and visualize the data inside a point cloud message.

Create sample ROS messages and inspect a point cloud image. ptcloud is a sample ROS
PointCloud2 message object.

exampleHelperROSLoadMessages
ptcloud

ptcloud =

 ROS PointCloud2 message with properties:

 PreserveStructureOnRead: 0

1 Classes — Alphabetical List

1-36

 MessageType: 'sensor_msgs/PointCloud2'
 Header: [1x1 Header]
 Height: 480
 Width: 640
 IsBigendian: 0
 PointStep: 32
 RowStep: 20480
 IsDense: 0
 Fields: [4x1 PointField]
 Data: [9830400x1 uint8]

 Use showdetails to show the contents of the message

Get RGB info and xyz-coordinates from the point cloud using readXYZ and readRGB.

xyz = readXYZ(ptcloud);
rgb = readRGB(ptcloud);

Display the point cloud in a figure using scatter3.

scatter3(ptcloud)

 PointCloud2

1-37

Create pointCloud Object Using Point Cloud Message

Convert a Robotics System Toolbox™ point cloud message into a Computer Vision
System Toolbox™ pointCloud object.

Load sample messages.

exampleHelperROSLoadMessages

Convert a ptcloud message to the pointCloud object.

pcobj = pointCloud(readXYZ(ptcloud),'Color',uint8(255*readRGB(ptcloud)))

1 Classes — Alphabetical List

1-38

pcobj =

 pointCloud with properties:

 Location: [307200x3 single]
 Color: [307200x3 uint8]
 Normal: []
 Intensity: []
 Count: 307200
 XLimits: [-1.8147 1.1945]
 YLimits: [-1.3714 0.8812]
 ZLimits: [1.4190 3.3410]

• “Work with Specialized ROS Messages”

See Also
readAllFieldNames | readField | readRGB | readXYZ | rosmessage |
rossubscriber | scatter3 | showdetails

Topics
“Work with Specialized ROS Messages”

Introduced in R2015a

 PointCloud2

1-39

rosdevice
Connect to remote ROS device

Description
The rosdevice object is used to create a connection with a ROS device. The object
contains the necessary login information and other parameters of the ROS distribution.
Once a connection is made using rosdevice, you can run and stop a ROS core or ROS
nodes and check the status of the ROS network. Before running ROS nodes, you must
connect MATLAB to the ROS network using rosinit.

You can deploy ROS nodes to a ROS device using Simulink® models. For an example, see
“Generate a Standalone ROS Node from Simulink®”.

Note To connect to a ROS device, an SSH server must be installed on the device.

Creation

Syntax
device = rosdevice(deviceAddress,username,password)
device = rosdevice

Description

device = rosdevice(deviceAddress,username,password) creates a rosdevice
object connected to the ROS device at the specified address and with the specified user
name and password.

device = rosdevice creates a rosdevice object connected to a ROS device using the
saved values for deviceAddress, username, and password.

1 Classes — Alphabetical List

1-40

Properties
DeviceAddress — Hostname or IP address of the ROS device
character vector

This property is read-only.

Hostname or IP address of the ROS device, specified as a character vector.
Example: '192.168.1.10'
Example: 'samplehost.foo.com'

UserName — User name used to connect to the ROS device
character vector

This property is read-only.

User name used to connect to the ROS device, specified as a character vector.
Example: 'user'

ROSFolder — Location of ROS installation
character vector

Location of ROS installation, specified as a character vector. If a folder is not specified,
MATLAB tries to determine the correct folder for you. When you deploy a ROS node, set
this value from Simulink in the Configuration Parameters dialog box, under
Hardware Implementation.
Example: '/opt/ros/hydro'

CatkinWorkspace — Catkin folder where models are deployed on device
character vector

Catkin folder where models are deployed on device, specified as a character vector. When
you deploy a ROS node, set this value from Simulink in the Configuration Parameters
dialog box, under Hardware Implementation.
Example: '~/catkin_ws_test'

AvailableNodes — Nodes available to run on ROS device
cell array of character vectors

 rosdevice

1-41

This property is read-only.

Nodes available to run on ROS device, returned as a cell array of character vectors.
Nodes are only listed if they are part of the CatkinWorkspace and have been deployed
to the device using Simulink.
Example: {'robotcontroller','publishernode'}

Object Functions
runNode Start ROS node
stopNode Stop ROS node
isNodeRunning Determine if ROS node is running
runCore Start ROS core
stopCore Stop ROS core
isCoreRunning Determine if ROS core is running
system Execute system command on device
putFile Copy file to device
getFile Get file from device
deleteFile Delete file from device
dir List folder contents on device
openShell Open interactive command shell to device

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run
ROS nodes to communicate via a ROS network. You can run and stop a ROS core or node
and check their status using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

1 Classes — Alphabetical List

1-42

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core and check if it is running.

runCore(d)
running = isCoreRunning(d)

running =

 logical

 1

Stop the ROS core and confirm that it is no longer running.

stopCore(d)
running = isCoreRunning(d)

running =

 logical

 0

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. First, run a ROS core so that
ROS nodes can communicate via a ROS network. You can run and stop a ROS core or
node and check their status using a rosdevice object.

 rosdevice

1-43

Create a connection to a ROS device. Specify the address, user name and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/hydro';
d.CatkinWorkspace = '~/catkin_ws_test'

d =

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.
Initializing global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Run a ROS node. specifying the node name. Check if the node is running.

1 Classes — Alphabetical List

1-44

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

runNode(d,'robotcontroller')
running = isNodeRunning(d,'robotcontroller')

running =

 logical

 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

stopNode(d,'robotcontroller')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Run Multiple ROS Nodes

Run multiple ROS nodes on a connected ROS device. ROS nodes can be generated using
Simulink® models to perform different tasks on the ROS network. These nodes are then
deployed on a ROS device and can be run independently of Simulink.

This example uses two different Simulink models that have been deployed as ROS nodes.
See Generate a standalone ROS node from Simulink®). and follow the instructions to
generate and deploy a ROS node. The 'robotcontroller' node sends velocity
commands to a robot to navigate it to a given point. The 'robotcontroller2' node
uses the same model, but doubles the linear velocity to drive the robot faster.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

 rosdevice with properties:

 rosdevice

1-45

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This ROS core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

Initializing global node /matlab_global_node_68749 with NodeURI http://192.168.154.1:64205/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Start up the Robot Simulator using ExampleHelperSimulinkRobotROS. This simulator
automatically connects to the ROS master on the ROS device. You will use this simulator
to run a ROS node and control the robot.

sim = ExampleHelperSimulinkRobotROS;

1 Classes — Alphabetical List

1-46

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

Run a ROS node, specifying the node name. The 'robotcontroller' node commands
the robot to a specific location ([-10 10]). Wait to see the robot drive.

runNode(d,'robotcontroller')
pause(10)

 rosdevice

1-47

Reset the Robot Simulator to reset the robot position. Alternatively, click Reset
Simulation. Because the node is still running, the robot continues back to the specific
location. To stop sending commands, stop the node.

resetSimulation(sim.Simulator)
pause(5)
stopNode(d,'robotcontroller')

1 Classes — Alphabetical List

1-48

Run the 'robotcontroller2' node. This model drives the robot with twice the linear
velocity. Reset the robot position. Wait to see the robot drive.

runNode(d,'robotcontroller2')
resetSimulation(sim.Simulator)
pause(10)

 rosdevice

1-49

Close the simulator. Stop the ROS node. Disconnect from the ROS network and stop the
ROS core.

close
stopNode(d,'robotcontroller2')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_68749 with NodeURI http://192.168.154.1:64205/

• “Generate a Standalone ROS Node from Simulink®”

1 Classes — Alphabetical List

1-50

See Also
isNodeRunning | runCore | runNode | stopNode

Topics
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

 rosdevice

1-51

TransformStamped
Create transformation message

Description
The TransformStamped object is an implementation of the geometry_msgs/
TransformStamped message type in ROS. The object contains meta-information about
the message itself and the transformation. The transformation has a translational and
rotational component.

Creation

Syntax
tform = getTransform(tftree,targetframe,sourceframe)

Description

tform = getTransform(tftree,targetframe,sourceframe) returns the latest
known transformation between two coordinate frames. Transformations are structured
as a 3-D translation (3-element vector) and a 3-D rotation (quaternion).

Properties
MessageType — Message type of ROS message
character vector

This property is read-only.

Message type of ROS message, returned as a character vector.
Data Types: char

1 Classes — Alphabetical List

1-52

Header — ROS Header message
Header object

This property is read-only.

ROS Header message, returned as a Header object. This header message contains the
MessageType, sequence (Seq), timestamp (Stamp), and FrameId.

ChildFrameID — Second coordinate frame to transform point into
character vector

Second coordinate frame to transform point into, specified as a character vector.

Transform — Transformation message
Transform object

This property is read-only.

Transformation message, specified as a Transform object. The object contains the
MessageType with a Translation vector and Rotation quaternion.

Object Functions
apply Transform message entities into target frame

Examples

Inspect Sample TransformStamped Object

This example looks at the TransformStamped object to show the underlying structure of
a TransformStamped ROS message. After setting up a network and transformations,
you can create a transformation tree and get transformations between specific coordinate
systems. Using showdetails lets you inspect the information in the transformation. It
contains the ChildFrameId, Header, and Transform.

Start ROS network and setup transformations.

rosinit
exampleHelperROSStartTfPublisher

 TransformStamped

1-53

Initializing ROS master on http://bat5823win64:54708/.
Initializing global node /matlab_global_node_07637 with NodeURI http://bat5823win64:54712/

Create transformation tree and wait for tree to update. Get the transform between the
robot base and its camera center.

tftree = rostf;
waitForTransform(tftree,'camera_center','robot_base');
tform = getTransform(tftree,'camera_center','robot_base');

Inspect the TransformStamped object.

showdetails(tform)

 ChildFrameId : robot_base
 Header
 Seq : 12219
 FrameId : camera_center
 Stamp
 Sec : 1504299019
 Nsec : 0
 Transform
 Translation
 X : 0.4999999999999998
 Y : 0
 Z : -1
 Rotation
 X : 0
 Y : -0.7071067811865475
 Z : 0
 W : 0.7071067811865476

Access the Translation vector inside the Transform property.

trans = tform.Transform.Translation

trans =

 ROS Vector3 message with properties:

 MessageType: 'geometry_msgs/Vector3'
 X: 0.5000
 Y: 0

1 Classes — Alphabetical List

1-54

 Z: -1

 Use showdetails to show the contents of the message

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_07637 with NodeURI http://bat5823win64:54712/
Shutting down ROS master on http://bat5823win64:54708/.

Apply Transformation using TransformStamped Object

Apply a transfortiom from a TransformStamped object to a PointStamped message.

Start ROS network and setup transformations.

rosinit
exampleHelperROSStartTfPublisher

Initializing ROS master on http://bat5823win64:54741/.
Initializing global node /matlab_global_node_33561 with NodeURI http://bat5823win64:54745/

Create transformation tree and wait for tree to update. Get the transform between the
robot base and its camera center. Inspect the transformation.

tftree = rostf;
waitForTransform(tftree,'camera_center','robot_base');
tform = getTransform(tftree,'camera_center','robot_base');
showdetails(tform)

 ChildFrameId : robot_base
 Header
 Seq : 12230
 FrameId : camera_center
 Stamp
 Sec : 1504299022
 Nsec : 119000064
 Transform
 Translation
 X : 0.4999999999999998

 TransformStamped

1-55

 Y : 0
 Z : -1
 Rotation
 X : 0
 Y : -0.7071067811865475
 Z : 0
 W : 0.7071067811865476

Create point to transform. You could also get this point message off the ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_center';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Apply the transformation to the point.

tfpt = apply(tform,pt);

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_33561 with NodeURI http://bat5823win64:54745/
Shutting down ROS master on http://bat5823win64:54741/.

• “Access the tf Transformation Tree in ROS”

See Also
Functions
apply | getTransform | rostf | transform | waitForTransform

Topics
“Access the tf Transformation Tree in ROS”

Introduced in R2015a

1 Classes — Alphabetical List

1-56

robotics.AimingConstraint class
Package: robotics

Create aiming constraint for pointing at a target location

Description
The AimingConstraint object describes a constraint that requires the z-axis of one
body (the end effector) to aim at a target point on another body (the reference body). This
constraint is satisfied if the z-axis of the end-effector frame is within an angular
tolerance in any direction of the line connecting the end-effector origin and the target
point. The position of the target point is defined relative to the reference body.

Constraint objects are used in GeneralizedInverseKinematics objects to specify
multiple kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory
With Multiple Kinematic Constraints”.

Construction
aimConst = robotics.AimingConstraint(endeffector) returns an aiming
constraint object that represents a constraint on a body specified by endeffector.

aimConst = robotics.AimingConstraint(endeffector,Name,Value) returns an
aiming constraint object with each specified property name set to the specified value by
one or more Name,Value pair arguments.

Name is any property name and must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 robotics.AimingConstraint class

1-57

Input Arguments

endeffector — End-effector name
character vector

End-effector name, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

Properties
EndEffector — Name of the end effector
character vector

Name of the end effector, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

ReferenceBody — Name of the reference body frame
'' (default) | character vector

Name of the reference body frame, specified as a character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this
constraint with GeneralizedInverseKinematics, the name must match a body
specified in the robot model (RigidBodyTree).

TargetPoint — Position of the target relative to the reference body
[0 0 0] (default) | [x y z] vector

Position of the target relative to the reference body, specified as an [x y z] vector. The
constraint uses the line between the origin of the EndEffector body frame and this
target point for maintaining the specified AngularTolerance.

AngularTolerance — Maximum allowed angle
0 (default) | numeric scalar

1 Classes — Alphabetical List

1-58

Maximum allowed angle between the z-axis of the end-effector frame and the line
connecting the end-effector origin to the target point, specified as a numeric scalar in
radians.

Weights — Weight of the constraint
1 (default) | numeric scalar

Weight of the constraint, specified as a numeric scalar. This weight is used with the
Weights property of all the constraints specified in GeneralizedInverseKinematics
to properly balance each constraint.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
robotics.GeneralizedInverseKinematics | robotics.OrientationTarget |
robotics.PoseTarget | robotics.PositionTarget

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

 robotics.AimingConstraint class

1-59

robotics.BinaryOccupancyGrid class
Package: robotics

Create occupancy grid with binary values

Description
BinaryOccupancyGrid creates a 2-D occupancy grid object, which you can use to
represent and visualize a robot workspace, including obstacles. The integration of sensor
data and position estimates create a spatial representation of the approximate locations
of the obstacles.

Occupancy grids are used in robotics algorithms such as path planning. They are also
used in mapping applications, such as for finding collision-free paths, performing
collision avoidance, and calculating localization. You can modify your occupancy grid to
fit your specific application.

Each cell in the occupancy grid has a value representing the occupancy status of that
cell. An occupied location is represented as true (1) and a free location is represented
as false (0).

The two coordinate systems supported are world and grid coordinates. The world
coordinates origin is defined by GridLocationInWorld, which defines the bottom-left
corner of the map. The number and size of grid locations are defined by the Resolution.
Also, the first grid location with index (1,1) begins in the top-left corner of the grid.

Construction
map = robotics.BinaryOccupancyGrid(width,height) creates a 2-D binary
occupancy grid representing a work space of width and height in meters. The default
grid resolution is one cell per meter.

map = robotics.BinaryOccupancyGrid(width,height,resolution) creates a
grid with resolution specified in cells per meter. The map is in world coordinates by
default. You can use any of the arguments from previous syntaxes.

1 Classes — Alphabetical List

1-60

map = robotics.BinaryOccupancyGrid(rows,cols,resolution,'grid') creates
a 2-D binary occupancy grid of size (rows,cols).

map = robotics.BinaryOccupancyGrid(p) creates a grid from the values in matrix
p. The size of the grid matches the size of the matrix, with each cell value interpreted
from its location in the matrix. p contains any numeric or logical type with zeros (0) and
ones (1).

map = robotics.BinaryOccupancyGrid(p,resolution) creates a
BinaryOccupancyGrid object with resolution specified in cells per meter.

Input Arguments
width — Map width
double in meters

Map width, specified as a double in meters.
Data Types: double

height — Map height
double in meters

Map width, specified as a double in meters.
Data Types: double

resolution — Grid resolution
1 (default) | double in cells per meter

Grid resolution, specified as a double in cells per meter.
Data Types: double

p — Input occupancy grid
matrix of ones and zeros

Input occupancy grid, specified as a matrix of ones and zeros. The size of the grid
matches the size of the matrix. Each matrix element corresponds to an occupied location
(1) or free location (0).

 robotics.BinaryOccupancyGrid class

1-61

Properties
GridSize — Number of rows and columns in grid
two-element horizontal vector

Number of rows and columns in grid, stored as a two-element horizontal vector of the
form [rows cols]. This value is read only.

Resolution — Grid resolution
1 (default) | scalar in cells per meter

Grid resolution, stored as a scalar in cells per meter. This value is read only.
Data Types: double

XWorldLimits — Minimum and maximum values of x-coordinates
two-element vector

Minimum and maximum values of x-coordinates, stored as a two-element horizontal
vector of the form [min max]. These values indicate the world range of the x-coordinates
in the grid. This value is read only.

YWorldLimits — Minimum and maximum values of y-coordinates
two-element vector

Minimum and maximum values of y-coordinates, stored as a two-element vector of the
form [min max]. These values indicate the world range of the y-coordinates in the grid.
This value is read only.

GridLocationInWorld — [x,y] world coordinates of grid
[0 0] (default) | two-element vector

[x,y] world coordinates of the bottom-left corner of the grid, specified as a two-element
vector.
Data Types: double

1 Classes — Alphabetical List

1-62

Methods

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = robotics.BinaryOccupancyGrid(10,10,10);

Set occupancy of world locations and show map.

map = robotics.BinaryOccupancyGrid(10,10,10);
x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)

 robotics.BinaryOccupancyGrid class

1-63

Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)

1 Classes — Alphabetical List

1-64

Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)

 robotics.BinaryOccupancyGrid class

1-65

Image to Binary Occupancy Grid Example

This example shows how to convert an image to a binary occupancy grid for using with
the Robotics System Toolbox®

% Import Image
filepath = fullfile(matlabroot,'examples','robotics','imageMap.png');
image = imread(filepath);

% Convert to grayscale and then black and white image based on arbitrary
% threshold.
grayimage = rgb2gray(image);

1 Classes — Alphabetical List

1-66

bwimage = grayimage < 0.5;

% Use black and white image as matrix input for binary occupancy grid
grid = robotics.BinaryOccupancyGrid(bwimage);

show(grid)

Convert PGM Image to Map

This example shows how to convert a .pgm file which contains a ROS map into a
BinaryOccupancyGrid map for use in MATLAB.

 robotics.BinaryOccupancyGrid class

1-67

Import image using imread. The image is quite large and should be cropped to the
relevant area.
image = imread(fullfile(matlabroot,'examples','robotics','playpen_map.pgm'));
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)

1 Classes — Alphabetical List

1-68

Unknown areas (gray) should be removed and treated as free space. Create a logical
matrix based on a threshold. Depending on your image, this value could be different.
Occupied space should be set as 1 (white in image).

imageBW = imageCropped < 100;
imshow(imageBW)

 robotics.BinaryOccupancyGrid class

1-69

Create BinaryOccupancyGrid object using adjusted map image.

map = robotics.BinaryOccupancyGrid(imageBW);
show(map)

1 Classes — Alphabetical List

1-70

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 robotics.BinaryOccupancyGrid class

1-71

See Also
robotics.PRM | robotics.PurePursuit

Topics
“Occupancy Grids”

Introduced in R2015a

1 Classes — Alphabetical List

1-72

robotics.CartesianBounds class
Package: robotics

Create constraint to keep body origin inside Cartesian bounds

Description
The CartesianBounds object describes a constraint on the position of one body (the end
effector) relative to a target frame fixed on another body (the reference body). This
constraint is satisfied if the position of the end-effector origin relative to the target frame
remains within the Bounds specified. The TargetTransform property is the
homogeneous transform that converts points in the target frame to points in the
ReferenceBody frame.

Constraint objects are used in GeneralizedInverseKinematics objects to specify
multiple kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory
With Multiple Kinematic Constraints”.

Construction
cartConst = robotics.CartesianBounds(endeffector) returns a Cartesian
bounds object that represents a constraint on the body of the robot model specified by
endeffector.

cartConst = robotics.CartesianBounds(endeffector,Name,Value) returns a
Cartesian bounds object with each specified property name set to the specified value by
one or more Name,Value pair arguments.

Name is any property name and must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 robotics.CartesianBounds class

1-73

Input Arguments
endeffector — End-effector name
character vector

End-effector name, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

Properties
EndEffector — Name of the end effector
character vector

Name of the end effector, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

ReferenceBody — Name of the reference body frame
'' (default) | character vector

Name of the reference body frame, specified as a character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this
constraint with GeneralizedInverseKinematics, the name must match a body
specified in the robot model (RigidBodyTree).

TargetTransform — Pose of the target frame relative to the reference body
eye(4) (default) | matrix

Pose of the target frame relative to the reference body, specified as a matrix. The matrix
is a homogeneous transform that specifies the relative transformation to convert a point
in the target frame to the reference body frame.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

Bounds — Bounds on end-effector position relative to target frame
zeros(3,2) (default) | [xMin xMax; yMin yMax; zMin zMax] vector

1 Classes — Alphabetical List

1-74

Bounds on end-effector position relative to target frame, specified as a 3-by-2 vector,
[xMin xMax; yMin yMax; zMin zMax]. Each row defines the minimum and
maximum values for the xyz-coordinates respectively.

Weights — Weights of the constraint
[1 1 1] (default) | [x y z] vector

Weights of the constraint, specified as an [x y z] vector. Each element of the vector
corresponds to the weight for the xyz-coordinates, respectively. These weights are used
with the Weights property of all the constraints specified in
GeneralizedInverseKinematics to properly balance each constraint.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
robotics.GeneralizedInverseKinematics | robotics.OrientationTarget |
robotics.PoseTarget | robotics.PositionTarget

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

 robotics.CartesianBounds class

1-75

robotics.GeneralizedInverseKinematics System
object
Package: robotics

Create multiconstraint inverse kinematics solver

Description
The GeneralizedInverseKinematics System object™ uses a set of kinematic
constraints to compute a joint configuration for the rigid body tree model specified by a
RigidBodyTree object. The GeneralizedInverseKinematics object uses a nonlinear
solver to satisfy the constraints or reach the best approximation.

Specify the constraint types, ConstraintInputs, before calling the object (or using the
step method). To change constraint inputs after calling the object, call release.

Specify the constraint inputs as constraint objects and call
GeneralizedInverseKinematics with these object passed into it. To create constraint
objects, use these classes:

• AimingConstraint
• CartesianBounds
• JointPositionBounds
• OrientationTarget
• PoseTarget
• PositionTarget

If your only constraint is the end-effector position and orientation, consider using
InverseKinematics as your solver instead.

To solve the generalize inverse kinematics constraints:

1 Create the robotics.GeneralizedInverseKinematics object and set its properties.
2 Call the object with arguments, as if it were a function.

1 Classes — Alphabetical List

1-76

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
gik = robotics.GeneralizedInverseKinematics
gik = robotics.GeneralizedInverseKinematics('
RigidBodyTree',rigidbodytree,'ConstraintInputs',inputTypes)
gik = robotics.GeneralizedInverseKinematics(Name,Value)

Description

gik = robotics.GeneralizedInverseKinematics returns a generalized inverse
kinematics solver with no rigid body tree model specified. Specify a RigidBodyTree
model and the ConstraintInputs property before using this solver.

gik = robotics.GeneralizedInverseKinematics('
RigidBodyTree',rigidbodytree,'ConstraintInputs',inputTypes) returns a
generalized inverse kinematics solver with the rigid body tree model and the expected
constraint inputs specified.

gik = robotics.GeneralizedInverseKinematics(Name,Value) returns a
generalized inverse kinematics solver with each specified property name set to the
specified value by one or more Name,Value pair arguments. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

 robotics.GeneralizedInverseKinematics System object

1-77

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

NumConstraints — Number of constraint inputs
scalar

This property is read-only.

Number of constraint inputs, specified as a scalar. The value of this property is the
number of constraint types specified in the ConstraintInputs property.

ConstraintInputs — Constraint input types
cell array of character vectors

Constraint input types, specified as a cell array of character vectors. The possible
constraint input types with their associated constraint objects are:

• 'orientation' — OrientationTarget
• 'position' — PositionTarget
• 'pose' — PoseTarget
• 'aiming' — AimingConstraint
• 'cartesian' — CartesianBounds
• 'joint' — JointPositionBounds

Use the constraint objects to specify the required parameters and pass those object types
into the object when you call it. For example:

Create the generalized inverse kinematics solver object. Specify the RigidBodyTree and
ConstraintInputs properties.

gik = robotics.GeneralizedInverseKinematics(...
 'RigidBodyTree',rigidbodytree,
 'ConstraintInputs',{'position','aiming'});

Create the corresponding constraint objects.

positionTgt = robotics.PositionTarget('left_palm');
aimConst = robotics.AimingConstraint('right_palm');

Pass the constraint objects into the solver object with an initial guess.

1 Classes — Alphabetical List

1-78

configSol = gik(initialGuess,positionTgt,aimConst);

RigidBodyTree — Rigid body tree model
RigidBodyTree object

Rigid body tree model, specified as a RigidBodyTree object. Define this property before
using the solver. If you modify your rigid body tree model, reassign the rigid body tree to
this property. For example:

Create IK solver and specify the rigid body tree.

gik = robotics.GeneralizedInverseKinematics(...
 'RigidBodyTree',rigidbodytree,
 'ConstraintInputs',{'position','aiming'});

Modify the rigid body tree model.

addBody(rigidbodytree,robotics.RigidBody('body1'), 'base')

Reassign the rigid body tree to the IK solver. If the solver or the step function is called
prior to modifying the rigid body tree model, use release to allow the property to be
changed.

gik.RigidBodyTree = rigidbodytree;

SolverAlgorithm — Algorithm for solving inverse kinematics
'BFGSGradientProjection' (default) | 'LevenbergMarquardt'

Algorithm for solving inverse kinematics, specified as either
'BFGSGradientProjection' or 'LevenbergMarquardt'. For details of each
algorithm, see “Inverse Kinematics Algorithms”.

SolverParameters — Parameters associated with algorithm
structure

Parameters associated with the specified algorithm, specified as a structure. The fields in
the structure are specific to the algorithm. See “Solver Parameters”.

 robotics.GeneralizedInverseKinematics System object

1-79

Usage

Syntax
[configSol,solInfo] = gik(initialguess,
constraintObj,...,constraintObjN)

Description

[configSol,solInfo] = gik(initialguess,
constraintObj,...,constraintObjN) finds a joint configuration, configSol, based
on the initial guess and a comma-separated list of constraint description objects. The
number of constraint descriptions depends on the ConstraintInputs property.

Input Arguments

initialguess — Initial guess of robot configuration
structure array | vector

Initial guess of robot configuration, specified as a structure array or vector. The value of
initialguess depends on the DataFormat property of the object specified in the
RigidBodyTree property specified in gik.

Use this initial guess to guide the solver to the target robot configuration. However, the
solution is not guaranteed to be close to this initial guess.

constraintObj,...,constraintObjN — Constraint descriptions
constraint objects

Constraint descriptions defined by the ConstraintInputs property of gik, specified as
one or more of these constraint objects:

• AimingConstraint
• CartesianBounds
• JointPositionBounds
• OrientationTarget

1 Classes — Alphabetical List

1-80

• PoseTarget
• PositionTarget

Output Arguments

configSol — Robot configuration solution
structure array | vector

Robot configuration solution, returned as a structure array or vector.depends on the
DataFormat property of the object specified in the RigidBodyTree property specified in
gik.

The structure array contains these fields:

• JointName — Character vector for the name of the joint specified in the
RigidBodyTree robot model

• JointPosition — Position of the corresponding joint

The vector output is an array of the joint positions that would be given in
JointPosition for a structure output.

This joint configuration is the computed solution that achieves the target end-effector
pose within the solution tolerance.

solInfo — Solution information
structure

Solution information, returned as a structure containing these fields:

• Iterations — Number of iterations run by the solver.
• NumRandomRestarts — Number of random restarts because the solver got stuck in a

local minimum.
• ConstraintViolation — Information about the constraint, returned as a structure

array. Each structure in the array has these fields:

• Type: Type of the corresponding constraint input, as specified in the
ConstraintInputs property.

• Violation: Vector of constraint violations for the corresponding constraint type.
0 indicates that the constraint is satisfied.

 robotics.GeneralizedInverseKinematics System object

1-81

• ExitFlag — Code that gives more details on the solver execution and what caused it
to return. For the exit flags of each solver type, see “Exit Flags”.

• Status — Character vector describing whether the solution is within the tolerances
defined by each constraint ('success') or outside the tolerance and is the best
possible solution that the solver could find ('best available').

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
getNumInputs Number of inputs required to call the System object
getNumOutputs Number of outputs from calling the System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values

and input characteristics
reset Reset internal states of System object

Examples

Solve Generalized Inverse Kinematics for a Set of Constraints

Create a generalized inverse kinematics solver that holds a robotic arm at a specific
location and points toward the robot base. Create the constraint objects to pass the
necessary constraint parameters into the solver.

Load predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Create the System object™ for solving generalized inverse kinematics.

1 Classes — Alphabetical List

1-82

gik = robotics.GeneralizedInverseKinematics;

Configure the System object to use the KUKA LBR robot.

gik.RigidBodyTree = lbr;

Tell the solver to expect a PositionTarget object and an AimingConstraint object as
the constraint inputs.

gik.ConstraintInputs = {'position','aiming'};

Create the two constraint objects.

1 The origin of the body named tool0 is located at [0.0 0.5 0.5] relative to the
robot's base frame.

2 The z-axis of the body named tool0 points toward the origin of the robot's base
frame.

posTgt = robotics.PositionTarget('tool0');
posTgt.TargetPosition = [0.0 0.5 0.5];

aimCon = robotics.AimingConstraint('tool0');
aimCon.TargetPoint = [0.0 0.0 0.0];

Find a configuration that satisfies the constraints. You must pass the constraint objects
into the System object in the order in which they were specified in the
ConstraintInputs property. Specify an initial guess at the robot configuration.

q0 = homeConfiguration(lbr); % Initial guess for solver
[q,solutionInfo] = gik(q0,posTgt,aimCon);

Visualize the configuration returned by the solver.

show(lbr,q);
title(['Solver status: ' solutionInfo.Status])
axis([-0.75 0.75 -0.75 0.75 -0.5 1])

 robotics.GeneralizedInverseKinematics System object

1-83

Plot a line segment from the target position to the origin of the base. The origin of the
tool0 frame coincides with one end of the segment, and its z-axis is aligned with the
segment.

hold on
plot3([0.0 0.0],[0.5 0.0],[0.5 0.0],'--o')
hold off

1 Classes — Alphabetical List

1-84

• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 robotics.GeneralizedInverseKinematics System object

1-85

When using code generation, you must specify the ConstraintInputs property to
define the constraints on construction of the object. For example:

gik = robotics.GenerlizedInverseKinematics(...
 'ConstraintInputs',{'pose','position'});

You also cannot change the SolverAlgorithm property after creation. To specify the
solver algorithm on creation, use:

gik = robotics.GenerlizedInverseKinematics(...
 'ConstraintInputs',{'pose','position'},...
 'SolverAlgorithm','LevenbergMarquardt');

See Also
Classes
robotics.AimingConstraint | robotics.CartesianBounds |
robotics.InverseKinematics | robotics.JointPositionBounds |
robotics.OrientationTarget | robotics.PoseTarget |
robotics.PositionTarget

Topics
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

1 Classes — Alphabetical List

1-86

robotics.InverseKinematics System object
Package: robotics

Create inverse kinematic solver

Description
The robotics.InverseKinematics System object creates an inverse kinematic (IK)
solver to calculate joint configurations for a desired end-effector pose based on a specified
rigid body tree model. You must create a rigid body tree model for your robot using the
robotics.RigidBodyTree class. This model defines all the joint constraints that the
solver enforces. If a solution is possible, the joint limits specified in the robot model are
obeyed.

To specify more constraints besides the end-effector pose, including aiming constraints,
position bounds, or orientation targets, consider using
robotics.GeneralizedInverseKinematics. This allows you to compute
multiconstraint IK solutions.

To compute joint configurations for a desired end-effector pose:

1 Create the robotics.InverseKinematics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
ik = robotics.InverseKinematics
ik = robotics.InverseKinematics(Name,Value)

 robotics.InverseKinematics System object

1-87

Description
ik = robotics.InverseKinematics creates an inverse kinematic solver. To use the
solver, specify a rigid body tree model in the RigidBodyTree property.

ik = robotics.InverseKinematics(Name,Value) creates an inverse kinematic
solver with additional options specified by one or more Name,Value pair arguments.
Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB
Using System Objects (MATLAB).

RigidBodyTree — Rigid body tree model
RigidBodyTree object

Rigid body tree model, specified as a RigidBodyTree object. If you modify your rigid
body tree model, reassign the rigid body tree to this property. For example:

Create IK solver and specify the rigid body tree.

ik = robotics.InverseKinematics('RigidBodyTree',rigidbodytree)

Modify the rigid body tree model.

addBody(rigidbodytree,robotics.RigidBody('body1'), 'base')

Reassign the rigid body tree to the IK solver. If the solver or the step function is called
prior to modifying the rigid body tree model, use release to allow the property to be
changed.

ik.RigidBodyTree = rigidbodytree;

1 Classes — Alphabetical List

1-88

SolverAlgorithm — Algorithm for solving inverse kinematics
'BFGSGradientProjection' (default) | 'LevenbergMarquardt'

Algorithm for solving inverse kinematics, specified as either
'BFGSGradientProjection' or 'LevenbergMarquardt'. For details of each
algorithm, see “Inverse Kinematics Algorithms”.

SolverParameters — Parameters associated with algorithm
structure

Parameters associated with the specified algorithm, specified as a structure. The fields in
the structure are specific to the algorithm. See “Solver Parameters”.

Usage

Syntax
[configSol,solInfo] = ik(endeffector,pose,weights,initialguess)

Description

[configSol,solInfo] = ik(endeffector,pose,weights,initialguess) finds a
joint configuration that achieves the specified end-effector pose. Specify an initial guess
for the configuration and your desired weights on the tolerances for the six components of
pose. Solution information related to execution of the algorithm, solInfo, is returned
with the joint configuration solution, configSol.

Input Arguments

endeffector — End-effector name
character vector

End-effector name, specified as a character vector. The end effector must be a body on
the RigidBodyTree object specified in the robotics.InverseKinematics System
object.

 robotics.InverseKinematics System object

1-89

pose — End-effector pose
4-by-4 homogeneous transform

End-effector pose, specified as a 4-by-4 homogeneous transform. This transform defines
the desired position and orientation of the rigid body specified in the endeffector
property.

weights — Weight for pose tolerances
6-element vector

Weight for pose tolerances, specified as a 6-element vector. The first three elements
correspond to the weights on the error in orientation for the desired pose. The last three
elements correspond to the weights on the error in xyz position for the desired pose.

initialguess — Initial guess of robot configuration
structure array

Initial guess of robot configuration, specified as a structure array. Use this initial guess
to help guide the solver to a desired robot configuration. However, the solution is not
guaranteed to be close to this initial guess.

Output Arguments
configSol — Robot configuration solution
structure array

Robot configuration, returned as a structure array. The structure array contains these
fields:

• JointName — Character vector for the name of the joint specified in the
RigidBodyTree robot model

• JointPosition — Position of the corresponding joint

This joint configuration is the computed solution that achieves the desired end-effector
pose within the solution tolerance.

solInfo — Solution information
structure

Solution information, returned as a structure. The solution information structure
contains these fields:

1 Classes — Alphabetical List

1-90

• Iterations — Number of iterations run by the algorithm.
• NumRandomRestarts — Number of random restarts because algorithm got stuck in a

local minimum.
• PoseErrorNorm — The magnitude of the pose error for the solution compared to the

desired end-effector pose.
• ExitFlag — Code that gives more details on the algorithm execution and what

caused it to return. For the exit flags of each algorithm type, see “Exit Flags”.
• Status — Character vector describing whether the solution is within the tolerance

('success') or the best possible solution the algorithm could find ('best
available').

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
getNumInputs Number of inputs required to call the System object
getNumOutputs Number of outputs from calling the System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values

and input characteristics
reset Reset internal states of System object

Examples

Generate Joint Positions to Achieve End-Effector Position

Generate joint positions for a robot model to achieve a desired end-effector position. The
InverseKinematics system object uses inverse kinematic algorithms to solve for valid
joint positions.

 robotics.InverseKinematics System object

1-91

Load example robots. The puma1 robot is a RigidBodyTree model of a six-axis robot
arm with six revolute joints.

load exampleRobots.mat
showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Generate a random configuration. Get the tranformation from the end effector (L6) to the
base for that random configuration. Use this transform as a goal pose of the end effector.
Show this configuration.

randConfig = puma1.randomConfiguration;
tform = getTransform(puma1,randConfig,'L6','base');

show(puma1,randConfig);

1 Classes — Alphabetical List

1-92

Create an InverseKinematics object for the puma1 model. Specify weights for the
different components of the pose. Use a lower magnitude weight for the orientation
angles than the position components. Use the home configuration of the robot as an
initial guess.

ik = robotics.InverseKinematics('RigidBodyTree',puma1);
weights = [0.25 0.25 0.25 1 1 1];
initialguess = puma1.homeConfiguration;

Calculate the joint positions using the ik object.

[configSoln,solnInfo] = ik('L6',tform,weights,initialguess);

 robotics.InverseKinematics System object

1-93

Show the newly generated solution configuration. The solution is a slightly different joint
configuration that achieves the same end-effector position. Multiple calls to the ik object
can give similar or very different joint configurations.

show(puma1,configSoln);

• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”

References

[1] Badreddine, Hassan, Stefan Vandewalle, and Johan Meyers. "Sequential Quadratic
Programming (SQP) for Optimal Control in Direct Numerical Simulation of

1 Classes — Alphabetical List

1-94

Turbulent Flow." Journal of Computational Physics. 256 (2014): 1–16. doi:
10.1016/j.jcp.2013.08.044.

[2] Bertsekas, Dimitri P. Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[3] Goldfarb, Donald. "Extension of Davidon’s Variable Metric Method to Maximization
Under Linear Inequality and Equality Constraints." SIAM Journal on Applied
Mathematics. Vol. 17, No. 4 (1969): 739–64. doi:10.1137/0117067.

[4] Nocedal, Jorge, and Stephen Wright. Numerical Optimization. New York, NY:
Springer, 2006.

[5] Sugihara, Tomomichi. "Solvability-Unconcerned Inverse Kinematics by the
Levenberg–Marquardt Method." IEEE Transactions on Robotics Vol. 27, No. 5
(2011): 984–91. doi:10.1109/tro.2011.2148230.

[6] Zhao, Jianmin, and Norman I. Badler. "Inverse Kinematics Positioning Using
Nonlinear Programming for Highly Articulated Figures." ACM Transactions on
Graphics Vol. 13, No. 4 (1994): 313–36. doi:10.1145/195826.195827.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When using code generation, you must specify the RigidBodyTree property to define
the robot on construction of the object. For example:

ik = robotics.InverseKinematics('RigidBodyTree',robotModel);

You also cannot change the SolverAlgorithm property after creation. To specify the
solver algorithm on creation, use:

ik = robotics.InverseKinematics('RigidBodyTree',robotModel,...
 'SolverAlgorithm','LevenbergMarquardt');

 robotics.InverseKinematics System object

1-95

See Also
robotics.GeneralizedInverseKinematics | robotics.Joint |
robotics.RigidBody | robotics.RigidBodyTree

Topics
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Inverse Kinematics Algorithms”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016b

1 Classes — Alphabetical List

1-96

robotics.Joint class
Package: robotics

Create a joint

Description
The Joint class creates a joint object that defines how a rigid body moves relative to an
attachment point. In a tree-structured robot, a joint always belongs to a specific rigid
body, and each rigid body has one joint.

The Joint object can describe joints of various types. When building a rigid body tree
structure with robotics.RigidBodyTree, you must assign the Joint object to a rigid
body using the robotics.RigidBody class.

The different joint types supported are:

• 'fixed' — Fixed joint that prevents relative motion between two bodies.
• 'revolute' — Single degree of freedom (DOF) joint that rotates around a given axis.

Also called a pin or hinge joint.
• 'prismatic' — Single DOF joint that slides along a given axis. Also called a sliding

joint.

Each joint type has different properties with different dimensions, depending on its
defined geometry.

Construction
jointObj = robotics.Joint(jname) creates a fixed joint with the specified name.

jointObj = robotics.Joint(jname,jtype) creates a joint of the specified type
with the specified name.

 robotics.Joint class

1-97

Input Arguments
jname — Joint name
character vector

Joint name, specified as a character vector. The joint name must be unique to access it
off the rigid body tree.
Example: 'elbow_right'

jtype — Joint type
'fixed' (default) | character vector

Joint type, specified as a character vector. The joint type predefines certain properties
when creating the joint.

The different joint types supported are:

• 'fixed' — Fixed joint that prevents relative motion between two bodies.
• 'revolute' — Single degree of freedom (DOF) joint that rotates around a given axis.

Also called a pin or hinge joint.
• 'prismatic' — Single DOF joint that slides along a given axis. Also called a sliding

joint.

Properties
Type — Joint type
'fixed' (default) | character vector

This property is read-only.

Joint type, returned as a character vector. The joint type predefines certain properties
when creating the joint.

The different joint types supported are:

• 'fixed' — Fixed joint that prevents relative motion between two bodies.
• 'revolute' — Single degree of freedom (DOF) joint that rotates around a given axis.

Also called a pin or hinge joint.

1 Classes — Alphabetical List

1-98

• 'prismatic' — Single DOF joint that slides along a given axis. Also called a sliding
joint.

If the rigid body that contains this joint is added to a robot model, the joint type must be
changed by replacing the joint using robotics.RigidBodyTree.replaceJoint.

Name — Joint name
character vector

Joint name, returned as a character vector. The joint name must be unique to access it
off the rigid body tree. If the rigid body that contains this joint is added to a robot model,
the joint name must be changed by replacing the joint using
robotics.RigidBodyTree.replaceJoint.
Example: 'elbow_right'

PositionLimits — Position limits of joint
vector

Position limits of the joint, specified as a vector of [min max] values. Depending on the
type of joint, these values have different definitions.

• 'fixed' — [NaN NaN] (default). A fixed joint has no joint limits. Bodies remain
fixed between each other.

• 'revolute' — [-pi pi] (default). The limits define the angle of rotation around
the axis in radians.

• 'prismatic' — [0 0.5] (default). The limits define the linear motion along the
axis in meters.

HomePosition — Home position of joint
scalar

Home position of joint, specified as a scalar that depends on your joint type. The home
position must fall in the range set by PositionLimits. This property is used by
robotics.RigidBodyTree.homeConfiguration to generate the predefined home
configuration for an entire rigid body tree.

Depending on the joint type, the home position has a different definition.

• 'fixed' — 0 (default). A fixed joint has no relevant home position.

 robotics.Joint class

1-99

• 'revolute' — 0 (default). A revolute joint has a home position defined by the angle
of rotation around the joint axis in radians.

• 'prismatic' — 0 (default). A prismatic joint has a home position defined by the
linear motion along the joint axis in meters.

JointAxis — Axis of motion for joint
[NaN NaN NaN] (default) | three-element unit vector

Axis of motion for joint, specified as a three-element unit vector. The vector can be any
direction in 3-D space in local coordinates.

Depending on the joint type, the joint axis has a different defintion.

• 'fixed' — A fixed joint has no relevant axis of motion.
• 'revolute' — A revolute joint rotates the body in the plane perpendicular to the

joint axis.
• 'prismatic' — A prismatic joint moves the body in a linear motion along the joint

axis direction.

JointToParentTransform — Fixed transform from joint to parent frame
eye(4) (default) | 4-by-4 homogeneous transform matrix

This property is read-only.

Fixed transform from joint to parent frame, returned as a 4-by-4 homogeneous transform
matrix. The transform converts the coordinates of points in the joint predecessor frame to
the parent body frame.

ChildToJointTransform — Fixed transform from child body to joint frame
eye(4) (default) | 4-by-4 homogeneous transform matrix

This property is read-only.

Fixed transform from child body to joint frame, returned as a 4-by-4 homogeneous
transform matrix. The transform converts the coordinates of points in the child body
frame to the joint successor frame.

1 Classes — Alphabetical List

1-100

Methods

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each RigidBody object
contains a Joint object and must be added to the RigidBodyTree using addBody.

Create a rigid body tree.
rbtree = robotics.RigidBodyTree;

Create a rigid body with a unique name.
body1 = robotics.RigidBody('b1');

Create a revolute joint. By default, the RigidBody object comes with a fixed joint.
Replace the joint by assigning a new Joint object to the body1.Joint property.

jnt1 = robotics.Joint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid
body to. Because this is the first body, use the base name of the tree.
basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

Robot: (1 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 b1 jnt1 revolute base(0)

 robotics.Joint class

1-101

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.

dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH

parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

1 Classes — Alphabetical List

1-102

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the
robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)

 robotics.Joint class

1-103

 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

1 Classes — Alphabetical List

1-104

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}

 robotics.Joint class

1-105

 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.

newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.

subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

1 Classes — Alphabetical List

1-106

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

• “Build a Robot Step by Step”
• “Rigid Body Tree Robot Model”

References

[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA:
Addison-Wesley, 1989.

[2] Siciliano, Bruno. Robotics: Modelling, Planning and Control. London: Springer, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 robotics.Joint class

1-107

See Also
robotics.RigidBody | robotics.RigidBodyTree

Topics
“Build a Robot Step by Step”
“Rigid Body Tree Robot Model”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016b

1 Classes — Alphabetical List

1-108

robotics.JointPositionBounds class
Package: robotics

Create constraint on joint positions of robot model

Description
The JointPositionBounds object describes a constraint on the joint positions of a rigid
body tree. This constraint is satisfied if the robot configuration vector maintains all joint
positions within the Bounds specified. The configuration vector contains positions for all
nonfixed joints in a RigidBodyTree object.

Constraint objects are used in GeneralizedInverseKinematics objects to specify
multiple kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory
With Multiple Kinematic Constraints”.

Construction
jointConst = robotics.JointPositionBounds(robot) returns a joint position
bounds object that represents a constraint on the configuration vector of the robot model
specified by robot.

jointConst = robotics.JointPositionBounds(robot,Name,Value) returns a
joint position bounds object with each specified property name set to the specified value
by one or more Name,Value pair arguments.

Name is any property name and must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 robotics.JointPositionBounds class

1-109

Input Arguments

robot — Rigid body tree model
RigidBodyTree object

Rigid body tree model, specified as a RigidBodyTree object.

Properties
Bounds — Bounds on the configuration vector
n-by-2 matrix

Bounds on the configuration vector, specified as an n-by-2 matrix. Each row of the array
corresponds to a nonfixed joint on the robot model and gives the minimum and maximum
position for that joint. By default, the bounds are set based on the PositionLimits
property of each robotics.Joint object within the input rigid body tree model, robot.

Weights — Weights of the constraint
ones(1,n) (default) | n-element vector

Weights of the constraint, specified as an n-element vector, where each element
corresponds to a row in Bounds and gives relative weights for each bound. The default is
a vector of ones to give equal weight to all joint positions. These weights are used with
the Weights property of all the constraints specified in
GeneralizedInverseKinematics to properly balance each constraint

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Classes — Alphabetical List

1-110

See Also
Classes
robotics.GeneralizedInverseKinematics | robotics.OrientationTarget |
robotics.PoseTarget | robotics.PositionTarget

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

 robotics.JointPositionBounds class

1-111

lidarScan
Creat object for storing 2-D lidar scan

Description
A lidarScan object contains data for a single 2-D lidar (light detection and ranging)
scan. The lidar scan is a laser scan for a 2-D plane with distances (Ranges) measured
from the sensor to obstacles in the environment at specific angles (Angles). Use this
laser scan object as an input to other robotics algorithms such as matchScans,
robotics.VectorFieldHistogram, or robotics.MonteCarloLocalization.

Creation

Syntax
scan = lidarScan(ranges,angles)
scan = lidarScan(cart)

Description

scan = lidarScan(ranges,angles) creates a lidarScan object from the ranges
and angles, that represent the data collected from a lidar sensor. The ranges and
angles inputs are vectors of the same length and are set directly to the Ranges and
Angles properties.

scan = lidarScan(cart) creates a lidarScan object using the input Cartesian
coordinates as an n-by-2 matrix. The Cartesian property is set directly from this input.

scan = lidarScan(scanMsg) creates a lidarScan object from a LaserScan ROS
message object.

1 Classes — Alphabetical List

1-112

Properties
Ranges — Range readings from lidar
vector

Range readings from lidar, specified as a vector. This vector is the same length as
Angles, and the vector elements are measured in meters.
Data Types: single | double

Angles — Angle of readings from lidar
vector

Angle of range readings from lidar, specified as a vector. This vector is the same length
as Ranges, and the vector elements are measured in radians. Angles are measured
counter-clockwise around the positive z-axis.
Data Types: single | double

Cartesian — Cartesian coordinates of lidar readings
[x y] matrix

Cartesian coordinates of lidar readings, returned as an [x y] matrix. In the lidar
coordinate frame, positive x is forward and positive y is to the left.
Data Types: single | double

Count — Number of lidar readings
scalar

Number of lidar readings, returned as a scalar. This scalar is also equal to the length of
the Ranges and Angles vectors or the number of rows in Cartesian.
Data Types: double

Object Functions
plot Display laser or lidar scan readings
removeInvalidData Remove invalid range and angle data
transformScan Transform laser scan based on relative pose

 lidarScan

1-113

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside
of the sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

1 Classes — Alphabetical List

1-114

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

 lidarScan

1-115

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Using the transformScan function, generate a second lidar scan at an x,y offset of
(0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

1 Classes — Alphabetical List

1-116

Match the reference scan and the second scan to estimate the pose difference between
them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan
into the frame of the first scan using the relative pose difference. Plot both the original
scans and the aligned scans.

currScan2 = transformScan(currScan,pose);

subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)
title('Original Scans')
hold off

subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

 lidarScan

1-117

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
LaserScan | matchScans | robotics.MonteCarloLocalization |
robotics.VectorFieldHistogram | transformScan

1 Classes — Alphabetical List

1-118

Introduced in R2017b

 lidarScan

1-119

robotics.LikelihoodFieldSensorModel class
Package: robotics

Create a likelihood field range sensor model

Description
LikelihoodFieldSensorModel creates a likelihood field sensor model object for range
sensors. This object contains specific sensor model parameters. You can use this object to
specify the model parameters in a robotics.MonteCarloLocalization object.

Construction
lf = robotics.LikelihoodFieldSensorModel creates a likelihood field sensor
model object for range sensors.

Properties
Map — Occupancy grid representing the map
BinaryOccupancyGrid object (default)

Occupancy grid representing the map, specified as a robotics.BinaryOccupancyGrid
object. This object represents the environment of the robot as a grid with binary values
indicating obstacles as true (1) and free locations as false (0).

SensorPose — Pose of the range sensor relative to the robot
[0 0 0] (default) | three-element vector

Pose of the range sensor relative to the coordinate frame of the robot, specified as a
three-element vector, [x y theta].

SensorLimits — Minimum and maximum range of sensor
[0 12] (default) | two-element vector

Minimum and maximum range of sensor, specified as a two-element vector in meters.

1 Classes — Alphabetical List

1-120

NumBeams — Number of beams used for likelihood computation
60 (default) | scalar

Number of beams used or likelihood computation, specified as a scalar. The computation
efficiency can be improved by specifying a smaller number of beams than the actual
number available from the sensor.

MeasurementNoise — Standard deviation for measurement noise
0.2 (default) | scalar

Standard deviation for measurement noise, specified as a scalar.

RandomMeasurementWeight — Weight for probability of random measurement
0.05 (default) | scalar

Weight for probability of random measurement, specified as a scalar. This is the
probability that the measurement is not accurate due to random interference.

ExpectedMeasurementWeight — Weight for probability of expected measurement
0.95 (default) | scalar

Weight for probability of expected measurement, specified as a scalar. The weight is the
probability of getting a correct range measurement within the noise limits specified in
MeasurementNoise property.

MaxLikelihoodDistance — Maximum distance to find nearest obstacles
2.0 (default) | scalar

Maximum distance to find nearest obstacles, specified as a scalar in meters.

Limitations
If you make changes to your sensor model after using it with the
MonteCarloLocalization object, call release on that object beforehand. For
example:

mcl = robotics.MonteCarloLocalization(...);
[isUpdated,pose,covariance] = mcl(...);
release(mcl)
mcl.SensorModel.PropName = value;

 robotics.LikelihoodFieldSensorModel class

1-121

See Also
robotics.MonteCarloLocalization | robotics.OdometryMotionModel

Topics
“Localize TurtleBot Using Monte Carlo Localization”
“Monte Carlo Localization Algorithm”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a

1 Classes — Alphabetical List

1-122

robotics.MonteCarloLocalization System object
Package: robotics

Localize robot using range sensor data and map

Description
The robotics.MonteCarloLocalization creates a Monte Carlo localization (MCL)
object. The MCL algorithm is used to estimate the position and orientation of a robot in
its environment using a known map of the environment, lidar scan data, and odometry
sensor data.

To localize the robot, the MCL algorithm uses a particle filter to estimate the robot’s
position. The particles represent the distribution of likely states for the robot, where each
particle represents a possible robot state. The particles converge around a single location
as the robot moves in the environment and senses different parts of the environment
using a range sensor. An odometry sensor measures the robot’s motion.

A robotics.MonteCarloLocalization object takes the pose and lidar scan data as
inputs. The input lidar scan sensor data is given in its own coordinate frame, and the
algorithm transforms the data according to the SensorModel.SensorPose property
that you must specify. The input pose is computed by integrating the odometry sensor
data over time. If the change in pose is greater than any of the specified update
thresholds, UpdateThresholds, then the particles are updated and the algorithm
computes a new state estimate from the particle filter. The particles are updated using
this process:

1 The particles are propagated based on the change in the pose and the specified
motion model, MotionModel.

2 The particles are assigned weights based on the likelihood of receiving the range
sensor reading for each particle. These likelihood weights are based on the sensor
model you specify in SensorModel.

3 Based on the ResamplingInterval property, the particles are resampled from the
posterior distribution, and the particles of low weight are eliminated. For example, a
resampling interval of 2 means that the particles are resampled after every other
update.

 robotics.MonteCarloLocalization System object

1-123

The outputs of the object are the estimated pose and covariance, and the value of
isUpdated. This estimated state is the mean and covariance of the highest weighted
cluster of particles. The output pose is given in the map’s coordinate frame that is
specified in the SensorModel.Map property. If the change in pose is greater than any of
the update thresholds, then the state estimate has been updated and isUpdated is
true. Otherwise, isUpdated is false and the estimate remains the same. For
continuous tracking the best estimate of a robot's state, repeat this process of
propagating particles, evaluating their likelihood, and resampling.

To estimate robot pose and covariance using lidar scan data:

1 Create the robotics.MonteCarloLocalization object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

Creation

Syntax
mcl = robotics.MonteCarloLocalization
mcl = robotics.MonteCarloLocalization(Name,Value)

Description

mcl = robotics.MonteCarloLocalization returns an MCL object that estimates
the pose of a robot using a map, a range sensor, and odometry data. By default, an empty
map is assigned, so a valid map assignment is required before using the object.

mcl = robotics.MonteCarloLocalization(Name,Value) creates an MCL object
with additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Classes — Alphabetical List

1-124

Properties
InitialPose — Initial pose of robot
[0 0 0] (default) | three-element vector

Initial pose of the robot used to start localization, specified as a three-element vector, [x
y theta], that indicates the position and heading of the robot. Initializing the MCL
object with an initial pose estimate enables you to use a smaller value for the maximum
number of particles and still converge on a location.

InitialCovariance — Covariance of initial pose
diag([1 1 1]) (default) | diagonal matrix | three-element vector | scalar

Covariance of the Gaussian distribution for the initial pose, specified as a diagonal
matrix. Three-element vector and scalar inputs are converted to a diagonal matrix. This
matrix gives an estimate of the uncertainty of the InitialPose.

GlobalLocalization — Flag to start global localization
false (default) | true

Flag indicating whether to perform global localization, specified as false or true. The
default value, false, initializes particles using the InitialPose and
InitialCovariance properties. A true value initializes uniformly distributed particles
in the entire map and ignores the InitialPose and InitialCovariance properties.
Global localization requires a large number of particles to cover the entire workspace.
Use global localization only when the initial estimate of robot location and orientation is
not available.

ParticleLimits — Minimum and maximum number of particles
[500 5000] (default) | two-element vector

Minimum and maximum number of particles, specified as a two-element vector, [min
max].

SensorModel — Likelihood field sensor model
LikelihoodFieldSensorModel object

Likelihood field sensor model, specified as a LikelihoodFieldSensorModel object.
The default value uses the default robotics.LikelihoodFieldSensorModel object.
After using the object to get output, call release on the object to make changes to
SensorModel. For example:

 robotics.MonteCarloLocalization System object

1-125

mcl = robotics.MonteCarloLocalization(_);
[isUpdated,pose,covariance] = mcl(_);
release(mcl)
mcl.SensorModel.PropName = value;

MotionModel — Odometry motion model for differential drive
OdometryMotionModel object

Odometry motion model for differential drive, specified as an OdometryMotionModel
object. The default value uses the default robotics.OdometryMotionModel object.
After using the object to get output, call release on the object to make changes to
MotionModel. For example:

mcl = robotics.MonteCarloLocalization(_);
[isUpdated,pose,covariance] = mcl(_);
release(mcl)
mcl.MotionModel.PropName = value;

UpdateThresholds — Minimum change in states required to trigger update
[0.2 0.2 0.2] (default) | three-element vector

Minimum change in states required to trigger update, specified as a three-element
vector. The localization updates the particles if the minimum change in any of the [x y
theta] states is met. The pose estimate updates only if the particle filter is updated.

ResamplingInterval — Number of filter updates between resampling of particles
1 (default) | positive integer

Number of filter updates between resampling of particles, specified as a positive integer.

UseLidarScan — Use lidarScan object as scan input
false (default) | true

Use a lidarScan object as scan input, specified as either false or true.

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

1 Classes — Alphabetical List

1-126

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
[isUpdated,pose,covariance] = mcl(odomPose,scan)

[isUpdated,pose,covariance] = mcl(odomPose,ranges,angles)

Description

[isUpdated,pose,covariance] = mcl(odomPose,scan) estimates the pose and
covariance of a robot using the MCL algorithm. The estimates are based on the pose
calculated from the specified robot odometry, odomPose, and the specified lidar scan
sensor data, scan. mcl is the robotics.MonteCarloLocalization object. isUpdated
indicates whether the estimate is updated based on the UpdateThreshold property.

To enable this syntax, you must set the UseLidarScan property to true. For example:

mcl = robotics.MonteCarloLocalization('UseLidarScan','true');
...
[isUpdated,pose,covariance] = mcl(odomPose,scan);

[isUpdated,pose,covariance] = mcl(odomPose,ranges,angles) specifies the
lidar scan data as ranges and angles.

Input Arguments

odomPose — Pose based on odometry
three-element vector

Pose based on odometry, specified as a three-element vector, [x y theta]. This pose is
calculated by integrating the odometry over time.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

 robotics.MonteCarloLocalization System object

1-127

Dependencies

To use this argument, you must set the UseLidarScan property to true.

mcl.UseLidarScan = true;

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector with elements measured in meters.
These range values are distances from a laser scan sensor at the specified angles. The
ranges vector must have the same number of elements as the corresponding angles
vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector with elements measured in radians.
These angle values are the angles at which the specified ranges were measured. The
angles vector must be the same length as the corresponding ranges vector.

Output Arguments

isUpdated — Flag for pose update
logical

Flag for pose update, returned as a logical. If the change in pose is more than any of the
update thresholds, then the output is true. Otherwise, it is false. A true output
means that updated pose and covariance are returned. A false output means that pose
and covariance are not updated and are the same as at the last update.

pose — Current pose estimate
three-element vector

Current pose estimate, returned as a three-element vector, [x y theta]. The pose is
computed as the mean of the highest-weighted cluster of particles.

covariance — Covariance estimate for current pose
matrix

1 Classes — Alphabetical List

1-128

Covariance estimate for current pose, returned as a matrix. This matrix gives an
estimate of the uncertainty of the current pose. The covariance is computed as the
covariance of the highest-weighted cluster of particles.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to robotics.MonteCarloLocalization
getParticles Get particles from localization algorithm

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
getNumInputs Number of inputs required to call the System object
getNumOutputs Number of outputs from calling the System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values

and input characteristics
reset Reset internal states of System object

Examples

Estimate Robot Pose from Range Sensor Data

Create a MonteCarloLocalization object, assign a sensor model, and calculate a pose
estimate using the step method.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

 robotics.MonteCarloLocalization System object

1-129

Create an MCL object.

mcl = robotics.MonteCarloLocalization;

Assign a sensor model with an occupancy grid map to the object.

sm = robotics.LikelihoodFieldSensorModel;
p = zeros(200,200);
sm.Map = robotics.OccupancyGrid(p,20);
mcl.SensorModel = sm;

Create sample laser scan data input.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;
angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Estimate robot pose and covariance.

[isUpdated,estimatedPose,covariance] = mcl(odometryPose,ranges,angles)

isUpdated =

 logical

 1

estimatedPose =

 0.0343 0.0193 0.0331

covariance =

 0.9467 0.0048 0
 0.0048 0.9025 0
 0 0 1.0011

• “Localize TurtleBot Using Monte Carlo Localization”

1 Classes — Alphabetical List

1-130

References

[1] Thrun, Sebatian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, 2005.

[2] Dellaert, F., D. Fox, W. Burgard, and S. Thrun. "Monte Carlo Localization for Mobile
Robots." Proceedings 1999 IEEE International Conference on Robotics and
Automation.

See Also
lidarScan | robotics.LikelihoodFieldSensorModel |
robotics.OdometryMotionModel

Topics
“Localize TurtleBot Using Monte Carlo Localization”
“Monte Carlo Localization Algorithm”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a

 robotics.MonteCarloLocalization System object

1-131

robotics.OccupancyGrid class
Package: robotics

Create occupancy grid with probabilistic values

Description
OccupancyGrid creates a 2-D occupancy grid map. Each cell in the occupancy grid has a
value representing the probability of the occupancy of that cell. Values close to 1
represent a high certainty that the cell contains an obstacle. Values close to 0 represent
certainty that the cell is not occupied and obstacle free.

Occupancy grids are used in robotics algorithms such as path planning (see
robotics.PRM). They are also used in mapping applications for finding collision-free
paths, performing collision avoidance, and calculating localization (see
robotics.MonteCarloLocalization). You can modify your occupancy grid to fit your
specific application.

The OccupancyGrid objects support world and grid coordinates. The world coordinates
origin is defined by the GridLocationInWorld property of the object, which defines the
bottom-left corner of the grid. The number and size of grid locations are defined by the
Resolution property. The first grid location with index (1,1) begins in the top-left
corner of the grid.

Use the OccupancyGrid class to create 2-D maps of an environment with probability
values representing different obstacles in your world. You can specify exact probability
values of cells or include observations from sensors such as laser scanners.

Probability values are stored using a binary Bayes filter to estimate the occupancy of
each grid cell. A log-odds representation is used, with values stored as int16 to reduce
the map storage size and allow for real-time applications.

If memory size is a limitation, consider using robotics.BinaryOccupancyGrid
instead. The binary occupancy grid uses less memory with binary values, but still works
with Robotics System Toolbox algorithms and other applications.

1 Classes — Alphabetical List

1-132

Construction
map = robotics.OccupancyGrid(width,height) creates a 2-D occupancy grid
object representing a world space of width and height in meters. The default grid
resolution is 1 cell per meter.

map = robotics.OccupancyGrid(width,height,resolution) creates an
occupancy grid with a specified grid resolution in cells per meter.

map = robotics.OccupancyGrid(rows,cols,resolution,'grid') creates an
occupancy grid with the specified number of rows and columns and with the resolution in
cells per meter.

map = robotics.OccupancyGrid(p) creates an occupancy grid from the values in
matrix p. The grid size matches the size of the matrix, with each cell probability value
interpreted from the matrix location.

map = robotics.OccupancyGrid(p,resolution) creates an occupancy grid from
the specified matrix and resolution in cells per meter.

Input Arguments
width — Map width
scalar in meters

Map width, specified as a scalar in meters.
Data Types: double

height — Map height
scalar in meters

Map height, specified as a scalar in meters.
Data Types: double

resolution — Grid resolution
1 (default) | scalar in cells per meter

Grid resolution, specified as a scalar in cells per meter.

 robotics.OccupancyGrid class

1-133

Data Types: double

p — Input occupancy grid
matrix of probability values from 0 to 1

Input occupancy grid, specified as a matrix of probability values from 0 to 1. The size of
the grid matches the size of the matrix. Each matrix element corresponds to the
probability of the grid cell location being occupied. Values close to 0 represent a high
certainty that the cell contains an obstacle. Values close to 1 represent certainty that the
cell is not occupied and obstacle free.
Data Types: double

Properties
FreeThreshold — Threshold to consider cells as obstacle-free
scalar

Threshold to consider cells as obstacle-free, specified as a scalar. Probability values below
this threshold are considered obstacle free. This property also defines the free locations
for path planning when using robotics.PRM.

OccupiedThreshold — Threshold to consider cells as occupied
scalar

Threshold to consider cells as occupied, specified as a scalar. Probability values above
this threshold are considered occupied.

ProbabilitySaturation — Saturation limits for probability
[0.001 0.999] (default) | [min max] vector

Saturation limits for probability, specified as a [min max] vector. Values above or below
these saturation values are set to the min and max values. This property reduces
oversaturating of cells when incorporating multiple observations.

GridSize — Number of rows and columns in grid
[rows cols] vector

This property is read-only.

Number of rows and columns in grid, stored as a [rows cols] vector.

1 Classes — Alphabetical List

1-134

Resolution — Grid resolution
1 (default) | scalar in cells per meter

Grid resolution, stored as a scalar in cells per meter. This value is read only.

XWorldLimits — Minimum and maximum world range values of x-coordinates
[min max] vector

Minimum and maximum world range values of x-coordinates, stored as a [min max]
vector. This value is read only.

YWorldLimits — Minimum and maximum world range values of y-coordinates
[min max] vector

Minimum and maximum world range values of y-coordinates, stored as a [min max]
vector. This value is read only.

GridLocationInWorld — [x,y] world coordinates of grid
[0 0] (default) | two-element vector

[x,y] world coordinates of the bottom-left corner of the grid, specified as a two-element
vector.

Methods

Examples

Insert Laser Scans Into Occupancy Grid

Take range and angle readings from a laser scan and insert these readings into an
occupancy grid.

Create an empty occupancy grid map.

map = robotics.OccupancyGrid(10,10,20);

Insert a laser scan into the occupancy grid. Specify the pose of the robot ranges and
angles and the max range of the laser scan.

 robotics.OccupancyGrid class

1-135

pose = [5,5,0];
ranges = 3*ones(100, 1);
angles = linspace(-pi/2, pi/2, 100);
maxrange = 20;

insertRay(map,pose,ranges,angles,maxrange);

Show the map to see the results of inserting the laser scan. Check the occupancy of the
spot directly in front of the robot.

show(map)
getOccupancy(map,[8 5])

ans =

 0.7000

1 Classes — Alphabetical List

1-136

Add a second reading and view the update to the occupancy values. The additional
reading increases the confidence in the readings. The free and occupied values become
more distinct.

insertRay(map,pose,ranges,angles,maxrange);
show(map)
getOccupancy(map,[8 5])

ans =

 0.8448

 robotics.OccupancyGrid class

1-137

Convert PGM Image to Map

Convert a portable graymap (.pgm) file containing a ROS map into an OccupancyGrid
map for use in MATLAB.

Import the image using imread. Crop the image to the relevant area.

image = imread(fullfile(matlabroot,'examples','robotics','playpen_map.pgm'));
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)

1 Classes — Alphabetical List

1-138

PGM values are expressed from 0 to 255 as uint8. Normalize these values by converting
the cropped image to double and dividing each cell by 255. This image shows obstacles
as values close to 0. Subtract the normalized image from 1 to get occupancy values with 1
representing occupied space.

 robotics.OccupancyGrid class

1-139

imageNorm = double(imageCropped)/255;
imageOccupancy = 1 - imageNorm;

Create the OccupancyGrid object using an adjusted map image. The imported map
resolution is 20 cells per meter.

map = robotics.OccupancyGrid(imageOccupancy,20);
show(map)

1 Classes — Alphabetical List

1-140

• “Mapping With Known Poses”

 robotics.OccupancyGrid class

1-141

Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16
using a log-odds representation. This data type limits resolution, but saves you memory
when storing large maps in MATLAB. When calling set and then get, the value
returned might not equal the value you set. For more information, see the log-odds
representations section in “Occupancy Grids”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
robotics.BinaryOccupancyGrid | robotics.PRM | robotics.PurePursuit

Topics
“Mapping With Known Poses”
“Occupancy Grids”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016b

1 Classes — Alphabetical List

1-142

robotics.OdometryMotionModel class
Package: robotics

Create an odometry motion model

Description
OdometryMotionModel creates an odometry motion model object for differential drive
robots. This object contains specific motion model parameters. You can use this object to
specify the motion model parameters in the robotics.MonteCarloLocalization
object.

This motion model assumes that the robot makes pure rotation and translation motions
to travel from one location to the other. The model propagates points for either forward
or backwards motion based on these motion patterns. The elements of the Noise
property refer to the variance in the motion. To see the effect of changing the noise
parameters, use robotics.OdometryMotionModel.showNoiseDistribution.

Construction
omm = robotics.OdometryMotionModel creates an odometry motion model object for
differential drive robots.

Properties
Noise — Gaussian noise for robot motion
[0.2 0.2 0.2 0.2] (default) | 4-element vector

Gaussian noise for robot motion, specified as a 4-element vector. This property
represents the variance parameters for Gaussian noise applied to robot motion. The
elements of the vector correspond to the following errors in order:

• Rotational error due to rotational motion

 robotics.OdometryMotionModel class

1-143

• Rotational error due to translational motion
• Translational error due to translation motion
• Translational error due to rotational motion

Type — Type of the odometry motion model
'DifferentialDrive' (default) | character vector

This property is read-only.

Type of the odometry motion model, returned as a character vector. This read-only
property indicates the type of odometry motion model being used by the object.

Examples

Predict Poses Based On An Odometry Motion Model

This example shows how to use the robotics.OdometryMotionModel class to predict
the pose of a robot. An OdometryMotionModel object contains the motion model
parameters for a differential drive robot. Use the object to predict the pose of a robot
based on its current and previous poses and the motion model parameters.

Create odometry motion mdoel object.

motionModel = robotics.OdometryMotionModel;

Define previous poses and the current odometry reading. Each pose prediction
corresponds to a row in previousPoses vector.

previousPoses = rand(10,3);
currentOdom = [0.1 0.1 0.1];

The first call to the object initializes values and returns the previous poses as the current
poses.

currentPoses = motionModel(previousPoses, currentOdom);

Subsequent calls to the object with updated odometry poses returns the predicted poses
based on the motion model.

1 Classes — Alphabetical List

1-144

currentOdom = currentOdom + [0.1 0.1 0.05];
predPoses = motionModel(previousPoses, currentOdom);

Show Noise Distribution Effects for Odometry Motion Model

This example shows how to visualize the effect of different noise parameters on the
robotics.OdometryMotionModel class. An OdometryMotionModel object contains
the motion model noise parameters for a differential drive robot. Use
showNoiseDistribution to visualize how changing these values affect the distribution
of predicted poses.

Create a motion model object.

motionModel = robotics.OdometryMotionModel;

Show the distribution of particles with the existing noise parameters. Each particle is a
hypothesis for the predicted pose.

showNoiseDistribution(motionModel);

 robotics.OdometryMotionModel class

1-145

Show the distribution with a specified odometry pose change and number of samples.
The change in odometry is used as the final pose with hypotheses distributed around
based on the Noise parameters.

showNoiseDistribution(motionModel, ...
 'OdometryPoseChange', [0.5 0.1 0.25], ...
 'NumSamples', 1000);

1 Classes — Alphabetical List

1-146

Change the Noise parameters and visualize the effects. Use the same odometry pose
change and number of samples.

 motionModel.Noise = [0.2 1 0.2 1];

 showNoiseDistribution(motionModel, ...
 'OdometryPoseChange', [0.5 0.1 0.25], ...
 'NumSamples', 1000);

 robotics.OdometryMotionModel class

1-147

• “Localize TurtleBot Using Monte Carlo Localization”

Methods

Limitations
If you make changes to your motion model after using it with the
MonteCarloLocalization object, call release on that object beforehand. For
example:

1 Classes — Alphabetical List

1-148

mcl = robotics.MonteCarloLocalization(...);
[isUpdated,pose,covariance] = mcl(...);
release(mcl)
mcl.MotionModel.PropName = value;

References

[1] Thrun, Sebatian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
robotics.LikelihoodFieldSensorModel | robotics.MonteCarloLocalization

Topics
“Localize TurtleBot Using Monte Carlo Localization”

Introduced in R2016a

 robotics.OdometryMotionModel class

1-149

robotics.OrientationTarget class
Package: robotics

Create constraint on relative orientation of body

Description
The OrientationTarget object describes a constraint that requires the orientation of
one body (the end effector) to match a target orientation within an angular tolerance in
any direction. The target orientation is specified relative to the body frame of the
reference body.

Constraint objects are used in GeneralizedInverseKinematics objects to specify
multiple kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory
With Multiple Kinematic Constraints”.

Construction
orientationConst = robotics.OrientationTarget(endeffector) returns an
orientation target object that represents a constraint on a body of the robot model
specified by endeffector.

orientationConst = robotics.OrientationTarget(endeffector,
Name,Value) returns an orientation target object with each specified property name set
to the specified value by one or more Name,Value pair arguments.

Name is any property name and must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Classes — Alphabetical List

1-150

Input Arguments

endeffector — End-effector name
character vector

End-effector name, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

Properties
EndEffector — Name of the end effector
character vector

Name of the end effector, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

ReferenceBody — Name of the reference body frame
'' (default) | character vector

Name of the reference body frame, specified as a character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this
constraint with GeneralizedInverseKinematics, the name must match a body
specified in the robot model (RigidBodyTree).

TargetOrientation — Target orientation of the end effector relative to the reference body
[1 0 0 0] (default) | four-element vector

Target orientation of the end effector relative to the reference body, specified as four-
element vector that represents a unit quaternion. The orientation of the end effector
relative to the reference body frame is the orientation that converts a direction specified
in the end-effector frame to the same direction specified in the reference body frame.

OrientationTolerance — Maximum allowed rotation angle
0 (default) | numeric scalar

 robotics.OrientationTarget class

1-151

Maximum allowed rotation angle in radians, specified as a numeric scalar. This value is
the upper bound on the magnitude of the rotation required to make the end-effector
orientation match the target orientation.

Weights — Weight of the constraint
1 (default) | numeric scalar

Weight of the constraint, specified as a numeric scalar. This weight is used with the
Weights property of all the constraints specified in GeneralizedInverseKinematics
to properly balance each constraint.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
robotics.GeneralizedInverseKinematics | robotics.JointPositionBounds |
robotics.PoseTarget | robotics.PositionTarget

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

1 Classes — Alphabetical List

1-152

ParameterTree
Access ROS parameter server

Description
A ParameterTree object communicates with the ROS parameter server. The ROS
parameter server can store strings, integers, doubles, Booleans, and cell arrays. The
parameters are accessible globally over the ROS network. You can use these parameters
to store static data such as configuration parameters.

To directly set, get, or access ROS parameters without creating a ParameterTree object,
see rosparam.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.
ROS Data Type MATLAB Data Type
32-bit integer int32
boolean logical
double double
string character vector (char)
list cell array (cell)
dictionary structure (struct)

Creation

Syntax
ptree = rosparam

ptree = robotics.ros.ParameterTree(node)

 ParameterTree

1-153

Description

ptree = rosparam creates a parameter tree object, ptree. After ptree is created, the
connection to the parameter server remains persistent until the object is deleted or the
ROS master becomes unavailable.

ptree = robotics.ros.ParameterTree(node) returns a ParameterTree object to
communicate with the ROS parameter server. The parameter tree attaches to the ROS
node, node. To connect to the global node, specify node as [].

Properties
AvailableParameters — List of parameter names on the server
cell array

This property is read-only.

List of parameter names on the server, specified as a cell array.
Example: {'/myParam';'/robotSize';'/hostname'}
Data Types: cell

Object Functions
get Get ROS parameter value
has Check if ROS parameter name exists
search Search ROS network for parameter names
set Set value of ROS parameter or add new parameter
del Delete a ROS parameter

Examples

Create ROS ParameterTree Object and Modify Parameters

Start the ROS master and create a ROS node.

1 Classes — Alphabetical List

1-154

master = robotics.ros.Core;
node = robotics.ros.Node('/test1');

Create the parameter tree object.

ptree = robotics.ros.ParameterTree(node);

Set multiple parameters.

set(ptree,'DoubleParam',1.0)
set(ptree,'CharParam','test')
set(ptree,'CellParam',{{'test'},{1,2}});

View the available parameters.

parameters = ptree.AvailableParameters

parameters =

 3x1 cell array

 {'/CellParam' }
 {'/CharParam' }
 {'/DoubleParam'}

Get a parameter value.

data = get(ptree,'CellParam')

data =

 1x2 cell array

 {1x1 cell} {1x2 cell}

Search for a parameter name.

search(ptree,'char')

ans =

 ParameterTree

1-155

 1x1 cell array

 {'/CharParam'}

Delete the parameter tree and ROS node. Shut down the ROS master.

clear('ptree','node')
clear('master')

Set A Dictionary Of Parameter Values

Use structures to specify a dictionary of ROS parameters under a specific namespace.

Connect to a ROS network.

rosinit

Initializing ROS master on http://bat5823win64:54437/.
Initializing global node /matlab_global_node_95144 with NodeURI http://bat5823win64:54441/

Create a dictionary of parameters values. This dictionary contains the information
relevant to an image. Display the structure to verify values.

image = imread('peppers.png');

pval.ImageWidth = size(image,1);
pval.ImageHeight = size(image,2);
pval.ImageTitle = 'peppers.png';
disp(pval)

 ImageWidth: 384
 ImageHeight: 512
 ImageTitle: 'peppers.png'

Set the dictionary of values using the desired namespace.

rosparam('set','ImageParam',pval)

Get the parameters using the namespace. Verify the values.

pval2 = rosparam('get','ImageParam')

pval2 =

1 Classes — Alphabetical List

1-156

 struct with fields:

 ImageHeight: 512
 ImageTitle: 'peppers.png'
 ImageWidth: 384

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_95144 with NodeURI http://bat5823win64:54441/
Shutting down ROS master on http://bat5823win64:54437/.

• “Access the ROS Parameter Server”

See Also
del | get | has | rosparam | search | set

Topics
“Access the ROS Parameter Server”

Introduced in R2015a

 ParameterTree

1-157

robotics.ParticleFilter class
Package: robotics

Create particle filter state estimator

Description
The particle filter is a recursive, Bayesian state estimator that uses discrete particles to
approximate the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two
steps: prediction and correction. The prediction step uses the previous state to predict the
current state based on a given system model. The correction step uses the current sensor
measurement to correct the state estimate. The algorithm periodically redistributes, or
resamples, the particles in the state space to match the posterior distribution of the
estimated state.

The estimated state consists of state variables. Each particle represents a discrete state
hypothesis of these state variables. The set of all particles is used to help determine the
final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and
measurement noise can follow arbitrary non-Gaussian distributions.

For more information on the particle filter workflow and setting specific parameters, see:

• “Particle Filter Workflow”
• “Particle Filter Parameters”

Construction
pf = robotics.ParticleFilter creates a ParticleFilter object that enables the
state estimation for a simple system with three state variables. Use the initialize
method to initialize the particles with a known mean and covariance or uniformly
distributed particles within defined bounds. To customize the particle filter’s system and

1 Classes — Alphabetical List

1-158

measurement models, modify the StateTransitionFcn and
MeasurementLikelihoodFcn properties.

After you create the ParticleFilter object, use
robotics.ParticleFilter.initialize to initialize the NumStateVariables and
NumParticles properties. The initialize function sets these two properties based on
your inputs.

Properties
NumStateVariables — Number of state variables
3 (default) | scalar

This property is read-only.

Number of state variables, specified as a scalar. This property is set based on the inputs
to the initialize method. The number of states is implicit based on the specified
matrices for initial state and covariance.

NumParticles — Number of particles used in the filter
1000 (default) | scalar

This property is read-only.

Number of particles using in the filter, specified as a scalar. You can specify this property
only by calling the initialize method.

StateTransitionFcn — Callback function for determining the state transition between
particle filter steps
function handle

Callback function for determining the state transition between particle filter steps,
specified as a function handle. The state transition function evolves the system state for
each particle. The function signature is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

The callback function accepts at least two input arguments: the ParticleFilter object,
pf, and the particles at the previous time step, prevParticles. These specified
particles are the predictParticles returned from the previous step call of the

 robotics.ParticleFilter class

1-159

ParticleFilter object. predictParticles and prevParticles are the same size:
NumParticles-by-NumStateVariables.

You can also use varargin to pass in a variable number of arguments from the predict
function. When you call:

predict(pf,arg1,arg2)

MATLAB essentially calls stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

MeasurementLikelihoodFcn — Callback function calculating the likelihood of sensor
measurements
function handle

Callback function calculating the likelihood of sensor measurements, specified as a
function handle. Once a sensor measurement is available, this callback function
calculates the likelihood that the measurement is consistent with the state hypothesis of
each particle. You must implement this function based on your measurement model. The
function signature is:

function likelihood = measurementLikelihoodFcn(PF,predictParticles,measurement,varargin)

The callback function accepts at least three input arguments:

1 pf – The associated ParticleFilter object
2 predictParticles – The particles that represent the predicted system state at the

current time step as an array of size NumParticles-by-NumStateVariables
3 measurement – The state measurement at the current time step

You can also use varargin to pass in a variable number of arguments. These arguments
are passed by the correct function. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,predictParticles,measurement,arg1,arg2)

The callback needs to return exactly one output, likelihood, which is the likelihood of
the given measurement for each particle state hypothesis.

1 Classes — Alphabetical List

1-160

IsStateVariableCircular — Indicator if state variables have a circular distribution
[0 0 0] (default) | logical array

Indicator if state variables have a circular distribution, specified as a logical array.
Circular (or angular) distributions use a probability density function with a range of [-
pi,pi]. If the ParticleFilter object has multiple state variables, then
IsStateVariableCircular is a row vector. Each vector element indicates if the
associated state variable is circular. If the object has only one state variable, then
IsStateVariableCircular is a scalar.

ResamplingPolicy — Policy settings that determine when to trigger resampling
object

Policy settings that determine when to trigger resampling, specified as an object.You can
trigger resampling either at fixed intervals, or you can trigger it dynamically, based on
the number of effective particles. See robotics.ResamplingPolicy for more
information.

ResamplingMethod — Method used for particle resampling
'multinomial' (default) | 'residual' | 'stratified' | 'systematic'

Method used for particle resampling, specified as 'multinomial', 'residual',
'stratified', and 'systematic'.

StateEstimationMethod — Method used for state estimation
'mean' (default) | 'maxweight'

Method used for state estimation, specified as 'mean' and 'maxweight'.

Particles — Array of particle values
NumParticles-by-NumStateVariables matrix

Array of particle values, specified as a NumParticles-by-NumStateVariables matrix.
Each row corresponds to the state hypothesis of a single particle.

Weights — Particle weights
NumParticles-by-1 vector

Particle weights, specified as a NumParticles-by-1 vector. Each weight is associated
with the particle in the same row in the Particles property.

 robotics.ParticleFilter class

1-161

Methods

Examples

Particle Filter Prediction and Correction

Create a ParticleFilter object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value
of StateTransitionFcn. It then corrects the state based on a given measurement and
the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = robotics.ParticleFilter

pf =

 ParticleFilter with properties:

 NumStateVariables: 3
 NumParticles: 1000
 StateTransitionFcn: @robotics.algs.gaussianMotion
 MeasurementLikelihoodFcn: @robotics.algs.fullStateMeasurement
 IsStateVariableCircular: [0 0 0]
 ResamplingPolicy: [1x1 robotics.ResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'row'
 Particles: [1000x3 double]
 Weights: [1000x1 double]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

1 Classes — Alphabetical List

1-162

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst =

 4.1562 0.9185 9.0202

Estimate Robot Position in a Loop Using Particle Filter

Use the ParticleFilter object to track a robot as it moves in a 2-D space. The
measured position has random noise added. Using predict and correct, track the
robot based on the measurement and on an assumed motion model.

Initialize the particle filter and specify the default state transition function, the
measurement likelihood function, and the resampling policy.

pf = robotics.ParticleFilter;
pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Sample 1000 particles with an initial position of [0 0] and unit covariance.

initialize(pf,1000,[0 0],eye(2));

Prior to estimation, define a sine wave path for the dot to follow. Create an array to store
the predicted and estimated position. Define the amplitude of noise.

t = 0:0.1:4*pi;
dot = [t; sin(t)]';
robotPred = zeros(length(t),2);

 robotics.ParticleFilter class

1-163

robotCorrected = zeros(length(t),2);
noise = 0.1;

Begin the loop for predicting and correcting the estimated position based on
measurements. The resampling of particles occurs based on the ResamplingPolicy
property. The robot moves based on a sine wave function with random noise added to the
measurement.

for i = 1:length(t)
 % Predict next position. Resample particles if necessary.
 [robotPred(i,:),robotCov] = predict(pf);
 % Generate dot measurement with random noise. This is
 % equivalent to the observation step.
 measurement(i,:) = dot(i,:) + noise*(rand([1 2])-noise/2);
 % Correct position based on the given measurement to get best estimation.
 % Actual dot position is not used. Store corrected position in data array.
 [robotCorrected(i,:),robotCov] = correct(pf,measurement(i,:));
end

Plot the actual path versus the estimated position. Actual results may vary due to the
randomness of particle distributions.

plot(dot(:,1),dot(:,2),robotCorrected(:,1),robotCorrected(:,2),'or')
xlim([0 t(end)])
ylim([-1 1])
legend('Actual position','Estimated position')
grid on

1 Classes — Alphabetical List

1-164

The figure shows how close the estimate state matches the actual position of the robot.
Try tuning the number of particles or specifying a different initial position and
covariance to see how it affects tracking over time.

• “Track a Car-Like Robot Using Particle Filter”

References

[1] Arulampalam, M.S., S. Maskell, N. Gordon, and T. Clapp. "A Tutorial on Particle
Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking." IEEE
Transactions on Signal Processing. Vol. 50, No. 2, Feb 2002, pp. 174-188.

 robotics.ParticleFilter class

1-165

[2] Chen, Z. "Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond."
Statistics. Vol. 182, No. 1, 2003, pp. 1-69.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
robotics.ParticleFilter.correct | robotics.ParticleFilter.predict |
robotics.ResamplingPolicy

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a

1 Classes — Alphabetical List

1-166

robotics.PoseTarget class
Package: robotics

Create constraint on relative pose of body

Description
The PoseTarget object describes a constraint that requires the pose of one body (the end
effector) to match a target pose within a distance and angular tolerance in any direction.
The target pose is specified relative to the body frame of the reference body.

Constraint objects are used in GeneralizedInverseKinematics objects to specify
multiple kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory
With Multiple Kinematic Constraints”.

Construction
poseConst = robotics.PoseTarget(endeffector) returns a pose target object
that represents a constraint on the body of the robot model specified by endeffector.

poseConst = robotics.PoseTarget(endeffector,Name,Value) returns a pose
target object with each specified property name set to the specified value by one or more
Name,Value pair arguments.

Name is any property name and must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

endeffector — End-effector name
character vector

 robotics.PoseTarget class

1-167

End-effector name, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

Properties
EndEffector — Name of the end effector
character vector

Name of the end effector, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

ReferenceBody — Name of the reference body frame
'' (default) | character vector

Name of the reference body frame, specified as a character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this
constraint with GeneralizedInverseKinematics, the name must match a body
specified in the robot model (RigidBodyTree).

TargetTransform — Pose of the target frame relative to the reference body
eye(4) (default) | matrix

Pose of the target frame relative to the reference body, specified as a matrix. The matrix
is a homogeneous transform that specifies the relative transformation to convert a point
in the target frame to the reference body frame.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

OrientationTolerance — Maximum allowed rotation angle
0 (default) | numeric scalar

Maximum allowed rotation angle in radians, specified as a numeric scalar. This value is
the upper bound on the magnitude of the rotation required to make the end-effector
orientation match the target orientation.

1 Classes — Alphabetical List

1-168

PositionTolerance — Maximum allowed distance from target
0 (default) | numeric scalar in meters

Maximum allowed distance from target, specified as a numeric scalar in meters. This
value is the upper bound on the distance between the end-effector origin and the target
position.

Weights — Weights of the constraint
[1 1] (default) | two-element vector

Weights of the constraint, specified as a two-element vector. Each element of the vector
corresponds to the weight for the PositionTolerance and OrientationTolerance
respectively. These weights are used with the Weights of all the constraints specified in
GeneralizedInverseKinematics to properly balance each constraint.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
robotics.CartesianBounds | robotics.GeneralizedInverseKinematics |
robotics.OrientationTarget | robotics.PositionTarget

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

 robotics.PoseTarget class

1-169

robotics.PositionTarget class
Package: robotics

Create constraint on relative position of body

Description
The PositionTarget object describes a constraint that requires the position of one body
(the end effector) to match a target position within a distance tolerance in any direction.
The target position is specified relative to the body frame of the reference body.

Constraint objects are used in GeneralizedInverseKinematics objects to specify
multiple kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory
With Multiple Kinematic Constraints”.

Construction
positionConst = robotics.PositionTarget(endeffector) returns a position
target object that represents a constraint on the body of the robot model specified by
endeffector.

positionConst = robotics.PositionTarget(endeffector,Name,Value)
returns a position target object with each specified property name set to the specified
value by one or more Name,Value pair arguments.

Name is any property name and must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

endeffector — End-effector name
character vector

1 Classes — Alphabetical List

1-170

End-effector name, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

Properties
EndEffector — Name of the end effector
character vector

Name of the end effector, specified as a character vector. When using this constraint with
GeneralizedInverseKinematics, the name must match a body specified in the robot
model (RigidBodyTree).
Example: 'left_palm'

ReferenceBody — Name of the reference body frame
'' (default) | character vector

Name of the reference body frame, specified as a character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this
constraint with GeneralizedInverseKinematics, the name must match a body
specified in the robot model (RigidBodyTree).

TargetPosition — Position of the target relative to the reference body
[0 0 0] (default) | [x y z] vector

Position of the target relative to the reference body, specified as an [x y z] vector. The
target position is a point specified in the reference body frame.

PositionTolerance — Maximum allowed distance from target
0 (default) | numeric scalar

Maximum allowed distance from target in meters, specified as a numeric scalar. This
value is the upper bound on the distance between the end-effector origin and the target
position.

Weights — Weight of the constraint
1 (default) | numeric scalar

 robotics.PositionTarget class

1-171

Weight of the constraint, specified as a numeric scalar. This weight is used with the
Weights property of all the constraints specified in GeneralizedInverseKinematics
to properly balance each constraint.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
robotics.CartesianBounds | robotics.GeneralizedInverseKinematics |
robotics.OrientationTarget | robotics.PoseTarget

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

1 Classes — Alphabetical List

1-172

robotics.PRM class
Package: robotics

Create probabilistic roadmap path planner

Description
PRM creates a roadmap path planner object for the environment map specified in the Map
property. The object uses the map to generate a roadmap, which is a network graph of
possible paths in the map based on free and occupied spaces. You can customize the
number of nodes, NumNodes, and the connection distance, ConnectionDistance, to fit
the complexity of the map and find an obstacle-free path from a start to an end location.

After the map is defined, the PRM path planner generates the specified number of nodes
throughout the free spaces in the map. A connection between nodes is made when a line
between two nodes contains no obstacles and is within the specified connection distance.

After defining a start and end location, to find an obstacle-free path using this network of
connections, use the findpath method. If findpath does not find a connected path, it
returns an empty array. By increasing the number of nodes or the connection distance,
you can improve the likelihood of finding a connected path, but tuning these properties is
necessary. To see the roadmap and the generated path , use the visualization options in
show. If you change any of the PRM properties, call update, show, or findpath to
recreate the roadmap.

Construction
planner = robotics.PRM creates an empty roadmap with default properties. Before
you can use the roadmap, you must specify a robotics.BinaryOccupancyGrid object
in the Map property.

planner = robotics.PRM(map) creates a roadmap with map set as the Map property,
where map is an object of the robotics.BinaryOccupancyGrid class.

planner = robotics.PRM(map,numnodes) sets the maximum number of nodes,
numnodes, to the NumNodes property.

 robotics.PRM class

1-173

Input Arguments
map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object is a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

numnodes — Maximum number of nodes in roadmap
50 (default) | scalar

Maximum number of nodes in roadmap, specified as a scalar. By increasing this value,
the complexity and computation time for the path planner increases.

Properties
'ConnectionDistance' — Maximum distance between two connected nodes
inf (default) | scalar in meters

Maximum distance between two connected nodes, specified as the comma-separated pair
consisting of 'ConnectionDistance' and a scalar in meters. This property controls
whether nodes are connected based on their distance apart. Nodes are connected only if
no obstacles are directly in the path. By decreasing this value, the number of connections
is lowered, but the complexity and computation time decreases as well.

'Map' — Map representation
BinaryOccupancyGrid object

Map representation, specified as the comma-separated pair consisting of 'Map' and a
robotics.BinaryOccupancyGrid object. This object represents the environment of the
robot. The object is a matrix grid with binary values indicating obstacles as true (1) and
free locations as false (0).

'NumNodes' — Number of nodes in the map
50 (default) | scalar

Number of nodes in the map, specified as the comma-separated pair consisting of
'NumNodes' and a scalar. By increasing this value, the complexity and computation
time for the path planner increases.

1 Classes — Alphabetical List

1-174

Methods

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The map input must be specified on creation of the PRM object.

See Also
robotics.BinaryOccupancyGrid | robotics.PurePursuit

Topics
“Path Planning in Environments of Different Complexity”
“Probabilistic Roadmaps (PRM)”

Introduced in R2015a

 robotics.PRM class

1-175

robotics.PurePursuit System object
Package: robotics

Create controller to follow set of waypoints

Description
The robotics.PurePursuit creates a controller object used to make a differential
drive robot follow a set of waypoints. The object computes the linear and angular
velocities for the robot given the current pose of the robot. Successive calls to the object
with updated poses provide updated velocity commands for the robot. Use the
MaxAngularVelocity and DesiredLinearVelocity properties to update the
velocities based on the robot’s performance.

The LookaheadDistance property computes a look-ahead point on the path, which is a
local goal for the robot. The angular velocity command is computed based on this point.
Changing LookaheadDistance has a significant impact on the performance of the
algorithm. A higher look-ahead distance results in a smoother trajectory for the robot,
but can cause the robot to cut corners along the path. A low look-ahead distance can
result in oscillations in tracking the path, causing unstable behavior. For more
information on the pure pursuit algorithm, see “Pure Pursuit Controller”.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

To compute linear and angular velocity control commands:

1 Create the robotics.PurePursuit object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

1 Classes — Alphabetical List

1-176

Creation

Syntax
controller = robotics.PurePursuit

controller = robotics.PurePursuit(Name,Value)

Description

controller = robotics.PurePursuit creates a pure pursuit object that uses the
pure pursuit algorithm to compute the linear and angular velocity inputs for a
differential drive robot.

controller = robotics.PurePursuit(Name,Value) creates a pure pursuit object
with additional options specified by one or more Name,Value pairs. Name is the property
name and Value is the corresponding value. Name must appear inside single quotes ('
'). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.
Example: controller = robotics.PurePursuit('DesiredLinearVelocity',
0.5)

Properties
DesiredLinearVelocity — Desired constant linear velocity
0.1 (default) | scalar in meters per second

Desired constant linear velocity, specified as a scalar in meters per second. The controller
assumes that the robot drives at a constant linear velocity and that the computed
angular velocity is independent of the linear velocity.
Data Types: double

LookaheadDistance — Look-ahead distance
1.0 (default) | scalar in meters

 robotics.PurePursuit System object

1-177

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes
the response of the controller. A robot with a higher look-ahead distance produces smooth
paths but takes larger turns at corners. A robot with a smaller look-ahead distance
follows the path closely and takes sharp turns, but potentially creating oscillations in the
path.
Data Types: double

MaxAngularVelocity — Maximum angular velocity
1.0 (default) | scalar in radians per second

Maximum angular velocity, specified a scalar in radians per second. The controller
saturates the absolute angular velocity output at the given value.
Data Types: double

Waypoints — Waypoints
[] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of
waypoints. You can generate the waypoints from the PRM class or from another source.
Data Types: double

Usage

Syntax
[vel,angvel] = controller(pose)
[vel,angvel,lookaheadpoint] = controller(pose)

Description

[vel,angvel] = controller(pose) processes the robot’s position and orientation,
pose, and outputs the linear velocity, vel, and angular velocity, angvel.

[vel,angvel,lookaheadpoint] = controller(pose) returns the look-ahead point,
which is a location on the path used to compute the velocity commands. This location on

1 Classes — Alphabetical List

1-178

the path is computed using the LookaheadDistance property on the controller
object.

Input Arguments
pose — Position and orientation of robot
3-by-1 vector in the form [x y theta]

Position and orientation of robot, specified as a 3-by-1 vector in the form [x y theta].
The robot’s pose is an x and y position with angular orientation θ (in radians) measured
from the x-axis.

Output Arguments
vel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

lookaheadpoint — Look-ahead point on path
[x y] vector

Look-ahead point on the path, returned as an [x y] vector. This value is calculated
based on the LookaheadDistance property.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

 robotics.PurePursuit System object

1-179

Specific torobotics.PurePursuit
info Characteristic information about PurePursuit object

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
getNumInputs Number of inputs required to call the System object
getNumOutputs Number of outputs from calling the System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values

and input characteristics
reset Reset internal states of System object

Examples

Get Additional PurePursuit Object Information

Use the info method to get more information about a PurePursuit object. info
returns two fields, RobotPose and LookaheadPoint, which correspond to the current
position and orientation of the robot and the point on the path used to compute outputs
from the last call of the object.

Create a PurePursuit object.

pp = robotics.PurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given
as the input.

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

1 Classes — Alphabetical List

1-180

s =

 struct with fields:

 RobotPose: [0 0 0]
 LookaheadPoint: [0.7071 0.7071]

• “Path Following for a Differential Drive Robot”

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

For additional information about code generation for System objects, see “System Objects
in MATLAB Code Generation” (MATLAB Coder)

See Also
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid | robotics.PRM

Topics
“Path Following for a Differential Drive Robot”
“Pure Pursuit Controller”

Introduced in R2015a

 robotics.PurePursuit System object

1-181

robotics.Rate
Execute loop at fixed frequency

Description
The Rate object enables you to run a loop at a fixed frequency. It also collects statistics
about the timing of the loop iterations. Use waitfor in the loop to pause code execution
until the next time step. The loop operates every DesiredPeriod seconds, unless the
enclosed code takes longer to operate. The object uses the OverrunAction property to
determine how it handles longer loop operation times. The default setting, 'slip',
immediately executes the loop if LastPeriod is greater than DesiredPeriod. Using
'drop' causes the waitfor method to wait until the next multiple of DesiredPeriod
is reached to execute the next loop.

Tip The scheduling resolution of your operating system and the level of other system
activity can affect rate execution accuracy. As a result, accurate rate timing is limited to
100 Hz for execution of MATLAB code. To improve performance and execution speeds,
use code generation.

Creation

Description

rateObj = robotics.Rate(desiredRate) creates a Rate object that operates loops
at a fixed-rate based on your system time and directly sets the DesireRate property.

Properties
DesiredRate — Desired execution rate
scalar

1 Classes — Alphabetical List

1-182

Desired execution rate of loop, specified as a scalar in Hz. When using waitfor, the loop
operates every DesiredRate seconds, unless the loop takes longer. It then begins the
next loop based on the specified OverrunAction.

DesiredPeriod — Desired time period between executions
scalar

Desired time period between executions, specified as a scalar in seconds. This property is
equal to the inverse of DesiredRate.

TotalElapsedTime — Elapsed time since construction or reset
scalar

Elapsed time since construction or reset, specified as a scalar in seconds.

LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default,
LastPeriod is set to NaN until waitfor is called for the first time. After the first call,
LastPeriod equals TotalElapsedTime.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — waits until the next time interval equal to a multiple of DesiredPeriod
• 'slip' — immediately executes the loop again

 robotics.Rate

1-183

Each code section calls waitfor at the end of execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods
reset Reset Rate object

Examples

1 Classes — Alphabetical List

1-184

Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = robotics.Rate(1);

Start a loop using the Rate object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.006148
Iteration: 2 - Time Elapsed: 1.007045
Iteration: 3 - Time Elapsed: 2.004028
Iteration: 4 - Time Elapsed: 3.003421
Iteration: 5 - Time Elapsed: 4.005034
Iteration: 6 - Time Elapsed: 5.012938
Iteration: 7 - Time Elapsed: 6.000512
Iteration: 8 - Time Elapsed: 7.000391
Iteration: 9 - Time Elapsed: 8.000306
Iteration: 10 - Time Elapsed: 9.001195

Each iteration executes at a 1-second interval.

Get Statistics From Rate Object Execution

Create a Rate object for running at 20 Hz.

r = robotics.Rate(2);

Start a loop and control operation using the Rate object.

for i = 1:30
 % Your code goes here
 waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

 robotics.Rate

1-185

stats =

 struct with fields:

 Periods: [1x30 double]
 NumPeriods: 30
 AveragePeriod: 0.5000
 StandardDeviation: 0.0050
 NumOverruns: 0

Run Loop At Fixed Rate and Reset Rate Object

Create a Rate object for running at 20 Hz.

r = robotics.Rate(2);

Start a loop and control operation using the Rate object.

for i = 1:30
 % Your code goes here
 waitfor(r);
end

Display the Rate object properties after loop operation.

disp(r)

 Rate with properties:

 DesiredRate: 2
 DesiredPeriod: 0.5000
 OverrunAction: 'slip'
 TotalElapsedTime: 15.0247
 LastPeriod: 0.4998

Reset the object to restart the time statistics.

reset(r);
disp(r)

 Rate with properties:

1 Classes — Alphabetical List

1-186

 DesiredRate: 2
 DesiredPeriod: 0.5000
 OverrunAction: 'slip'
 TotalElapsedTime: 0.0013
 LastPeriod: NaN

• “Execute Code at a Fixed-Rate”

See Also
rosrate | waitfor

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a

 robotics.Rate

1-187

robotics.ResamplingPolicy class
Package: robotics

Create resampling policy object with resampling settings

Description
ResamplingPolicy creates an object encapsulating settings for when resampling
should occur when using a particle filter for state estimation. The object contains the
method that triggers resampling and the relevant threshold for this resampling. Use this
object as the ResamplingPolicy property of the ParticleFilter class.

Construction
policy = robotics.ResamplingPolicy creates a ResamplingPolicy object which
contains properties to be modified to control when resampling should be triggered. Use
this object as the ResamplingPolicy property of the ParticleFilter class.

Properties
TriggerMethod — Method for determining if resampling should occur
'ratio' (default) | character vector

Method for determining if resampling should occur, specified as a character vector.
Possible choices are 'ratio' and 'interval'. The 'interval' method triggers
resampling at regular intervals of operating the particle filter. The 'ratio' method
triggers resampling based on the ratio of effective total particles.

SamplingInterval — Fixed interval between resampling
1 (default) | scalar

Fixed interval between resampling, specified as a scalar. This interval determines during
which correction steps the resampling is executed. For example, a value of 2 means the

1 Classes — Alphabetical List

1-188

resampling is executed every second correction step. A value of inf means that
resampling is never executed.

This property only applies with the TriggerMethod is set to 'interval'.

MinEffectiveParticleRatio — Minimum desired ratio of effective to total particles
0.5 (default) | scalar

Minimum desired ratio of effective to total particles, specified as a scalar. The effective
number of particles is a measure of how well the current set of particles approximates
the posterior distribution. A lower effective particle ratio means less particles are
contributing to the estimation and resampling might be required. If the ratio of effective
particles to total particles falls below the MinEffectiveParticleRatio, a resampling
step is triggered.

See Also
robotics.ParticleFilter | robotics.ParticleFilter.correct

Topics
“Track a Car-Like Robot Using Particle Filter”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016a

 robotics.ResamplingPolicy class

1-189

robotics.RigidBody class
Package: robotics

Create a rigid body

Description
The RigidBody class represents a rigid body. A rigid body is the building block for any
tree-structured robot manipulator. Each RigidBody has a robotics.Joint object
attached to it that defines how the rigid body can move. Rigid bodies are assembled into
a tree-structured robot model using robotics.RigidBodyTree.

Set a joint object to the Joint property before calling
robotics.RigidBodyTree.addBody to add the rigid body to the robot model. When a
rigid body is in a rigid body tree, you cannot directly modify its properties because it
corrupts the relationships between bodies. Use
robotics.RigidBodyTree.replaceJoint to modify the entire tree structure.

Construction
body = robotics.RigidBody(name) creates a rigid body with the specified name. By
default, the body comes with a fixed joint.

Input Arguments
name — Name of rigid body
character vector

Name of the rigid body, specified as a character vector. This name must be unique to the
body so that it can be accessed in a RigidBodyTree object.

1 Classes — Alphabetical List

1-190

Properties
Name — Name of rigid body
character vector

Name of the rigid body, specified as a character vector. This name must be unique to the
body so that it can be found in a RigidBodyTree object.

Joint — Joint object
handle

Joint object, specified as a handle. By default, the joint is 'fixed' type. Create the
joint using robotics.Joint and specify the joint type on creation.

Mass — Mass of rigid body
1 kg (default) | numeric scalar

Mass of rigid body, specified as a numeric scalar in kilograms.

CenterOfMass — Center of mass position of rigid body
[0 0 0] m (default) | [x y z] vector

Center of mass position of rigid body, specified as an [x y z] vector. The vector
describes the location of the center of mass relative to the body frame in meters.

Inertia — Inertia of rigid body
[1 1 1 0 0 0] kg•m2 (default) | [Ixx Iyy Izz Iyz Ixz Ixy] vector

Inertia of rigid body, specified as a [Ixx Iyy Izz Iyz Ixz Ixy] vector relative to the
body frame in kilogram square meters. The first three elements of the vector are the
diagonal elements of the inertia tensor. The last three elements are the off-diagonal
elements of the inertia tensor. The inertia tensor is a positive definite symmetric matrix:

I I I

I I I

I I I

xx xy xz

xy yy yz

xz yz zz

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

Parent — Rigid body parent
RigidBody object handle

 robotics.RigidBody class

1-191

Rigid body parent, specified as a RigidBody object handle. The rigid body joint defines
how this body can move relative to the parent. This property is empty until the rigid body
is added to a RigidBodyTree robot model.

Children — Rigid body children
cell array of RigidBody object handles

Rigid body children, specified as a cell array of RigidBody object handles. These rigid
body children are all attached to this rigid body object. This property is empty until the
rigid body is added to a RigidBodyTree robot model, and at least one other body is
added to the tree with this body as its parent.

Visuals — Visual geometries
cell array of character vectors

Visual geomteries, specified as a cell array of character vectors. Each character vector
describes a type and source of a visual geometry. For example, if a mesh file,
link_0.stl, is attached to the rigid body, the character vectour would be
'Mesh:link_0.stl'. Visual geometries are added to the rigid body using
robotics.RigidBody.addVisual.

Methods

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each RigidBody object
contains a Joint object and must be added to the RigidBodyTree using addBody.

Create a rigid body tree.

rbtree = robotics.RigidBodyTree;

Create a rigid body with a unique name.

body1 = robotics.RigidBody('b1');

1 Classes — Alphabetical List

1-192

Create a revolute joint. By default, the RigidBody object comes with a fixed joint.
Replace the joint by assigning a new Joint object to the body1.Joint property.

jnt1 = robotics.Joint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid
body to. Because this is the first body, use the base name of the tree.
basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

Robot: (1 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 b1 jnt1 revolute base(0)

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.
dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

 robotics.RigidBody class

1-193

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH

parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;

1 Classes — Alphabetical List

1-194

body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the
robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

 robotics.RigidBody class

1-195

• “Build a Robot Step by Step”
• “Rigid Body Tree Robot Model”

References

[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA:
Addison-Wesley, 1989.

[2] Siciliano, Bruno. Robotics: Modelling, Planning and Control. London: Springer, 2009.

1 Classes — Alphabetical List

1-196

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
robotics.Joint | robotics.RigidBodyTree |
robotics.RigidBodyTree.addBody | robotics.RigidBodyTree.replaceJoint

Topics
“Build a Robot Step by Step”
“Rigid Body Tree Robot Model”
Class Attributes (MATLAB)
Property Attributes (MATLAB)

Introduced in R2016b

 robotics.RigidBody class

1-197

robotics.RigidBodyTree class
Package: robotics

Create tree-structured robot

Description
The RigidBodyTree is a representation of the connectivity of rigid bodies with joints.
Use this class to build robot manipulator models in MATLAB. If you have a robot model
specified using the Unified Robot Description Format (URDF), use importrobot to
import your robot model.

A rigid body tree model is made up of rigid bodies as RigidBody objects. Each rigid body
has a Joint object associated with it that defines how it can move relative to its parent
body. Use setFixedTransform to define the fixed transformation between the frame of
a joint and the frame of one of the adjacent bodies. You can add, replace, or remove rigid
bodies from the model using the methods of the RigidBodyTree class.

Robot dynamics calculations are also possible. Specify the Mass, CenterOfMass, and
Inertia properties for each RigidBody in the robot model. You can calculate forward
and inverse dynamics with or without external forces and compute dynamics quantities
given robot joint motions and joint inputs. To use the dynamics-related functions, set the
DataFormat property to 'row' or 'column'.

For a given rigid body tree model, you can also use the robot model to calculate joint
angles for desired end-effector positions using the robotics inverse kinematics algorithms.
Specify your rigid body tree model when using InverseKinematics or
GeneralizedInverseKinematics.

The show method supports visualization of body meshes. Meshes are specfiied as .stl
files and can be added to individual rigid bodies using addVisual. Also, by default, the
importrobot function loads all the accessible .stl files specified in your URDF robot
model.

1 Classes — Alphabetical List

1-198

Construction
robot = robotics.RigidBodyTree creates a tree-structured robot object. Add rigid
bodies to it using addBody.

robot =
robotics.RigidBodyTree('MaxNumBodies',N,'DataFormat',dataFormat)
specifies an upper bound on the number of bodies allowed in the robot when generating
code. You must also specify the DataFormat property as a name-value pair.

Properties
NumBodies — Number of bodies
integer

This property is read-only.

Number of bodies in the robot model (not including the base), returned as an integer.

Bodies — List of rigid bodies
cell array of handles

This property is read-only.

List of rigid bodies in the robot model, returned as a cell array of handles. Use this list to
access specific RigidBody objects in the model. You can also call
robotics.RigidBodyTree.getBody to get a body by its name.

BodyNames — Names of rigid bodies
cell array of character vectors

This property is read-only.

Names of rigid bodies, returned as a cell array of character vectors.

BaseName — Name of robot base
'base' (default) | character vector

Name of robot base, returned as a character vector.

 robotics.RigidBodyTree class

1-199

Gravity — Gravitational acceleration experienced by robot
[0 0 0] m/s2 (default) | [x y z] vector

Gravitational acceleration experienced by robot, specified as an [x y z] vector in
meters per second squared. Each element corresponds to the acceleration of the base
robot frame in that direction.

DataFormat — Input/output data format for kinematics and dynamics functions
'struct' (default) | 'row' | 'column'

Input/output data format for kinematics and dynamics functions, specified as 'struct',
'row', or 'column'. To use dynamics functions, you must use either 'row' or
'column'.

Methods

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each RigidBody object
contains a Joint object and must be added to the RigidBodyTree using addBody.

Create a rigid body tree.

rbtree = robotics.RigidBodyTree;

Create a rigid body with a unique name.

body1 = robotics.RigidBody('b1');

Create a revolute joint. By default, the RigidBody object comes with a fixed joint.
Replace the joint by assigning a new Joint object to the body1.Joint property.

jnt1 = robotics.Joint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid
body to. Because this is the first body, use the base name of the tree.

1 Classes — Alphabetical List

1-200

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

Robot: (1 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 b1 jnt1 revolute base(0)

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.

dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.

 robotics.RigidBodyTree class

1-201

3 Use setFixedTransform to specify the body-to-body transformation using DH
parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')

1 Classes — Alphabetical List

1-202

addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the
robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

 robotics.RigidBodyTree class

1-203

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

1 Classes — Alphabetical List

1-204

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}
 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.

newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

 robotics.RigidBodyTree class

1-205

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.

subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

1 Classes — Alphabetical List

1-206

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Specify Dynamics Properties to Rigid Body Tree

To use dyanmics functions to calculate joint torques and accelerations, specify the
dynamics properties for the robotics.RigidBodyTree object and
robotics.RigidBody.

Create a rigid body tree model. Create two rigid bodies to attach to it.

robot = robotics.RigidBodyTree('DataFormat','row');
body1 = robotics.RigidBody('body1');
body2 = robotics.RigidBody('body2');

Specify joints to attach to the bodies. Set the fixed transformation of body2 to body1.
This transform is 1m in the x-direction.

joint1 = robotics.Joint('joint1','revolute');
joint2 = robotics.Joint('joint2');
setFixedTransform(joint2,trvec2tform([1 0 0]))
body1.Joint = joint1;
body2.Joint = joint2;

Specify dynamics properties for the two bodies. Add the bodies to the robot model. For
this example, basic values for a rod (body1) with an attached spherical mass (body2) are
given.

body1.Mass = 2;
body1.CenterOfMass = [0.5 0 0];
body1.Inertia = [0.167 0.001 0.167 0 0 0];

body2.Mass = 1;
body2.CenterOfMass = [0 0 0];
body2.Inertia = 0.0001*[4 4 4 0 0 0];

 robotics.RigidBodyTree class

1-207

addBody(robot,body1,'base');
addBody(robot,body2,'body1');

Compute the center of mass position of the whole robot. Plot the position on the robot.
Move the view to the xy plane.

comPos = centerOfMass(robot);

show(robot);
hold on
plot(comPos(1),comPos(2),'or')
view(2)

1 Classes — Alphabetical List

1-208

Change the mass of the second body. Notice the change in center of mass.

body2.Mass = 20;
replaceBody(robot,'body2',body2)

comPos2 = centerOfMass(robot);
plot(comPos2(1),comPos2(2),'*g')
hold off

 robotics.RigidBodyTree class

1-209

Compute Forward Dynamics Due to External Forces on Rigid Body Tree Model

Calculate the resultant joint accelerations for a given robot configuration with applied
external forces and forces due to gravity. A wrench is applied to a specific body with the
gravity being specified for the whole robot.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the gravity. By default, gravity is assumed to be zero.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for the lbr robot.

q = homeConfiguration(lbr);

Specify the wrench vector that represents the external forces experienced by the robot.
Use the externalForce function to generate the external force matrix. Specify the robot
model, the end effector that experiences the wrench, the wrench vector, and the current
robot configuration. wrench is given relative to the 'tool0' body frame, which requires
you to specify the robot configuration, q.

wrench = [0 0 0.5 0 0 0.3];
fext = externalForce(lbr,'tool0',wrench,q);

Compute the resultant joint accelerations due to gravity, with the external force applied
to the end-effector 'tool0' when lbr is at its home configuration. The joint velocities
and joint torques are assumed to be zero (input as an empty vector []).

qddot = forwardDynamics(lbr,q,[],[],fext);

1 Classes — Alphabetical List

1-210

Compute Inverse Dynamics from Static Joint Configuration

Use the inverseDynamics function to calculate the required joint torques to statically
hold a specific robot configuration. You can also specify the joint velocities, joint
accelerations, and external forces using other syntaxes.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Generate a random configuration for lbr.

q = randomConfiguration(lbr);

Compute the required joint torques for lbr to statically hold that configuration.

tau = inverseDynamics(lbr,q);

Compute Joint Torque to Counter External Forces

Use the externalForce function to generate force matrices to apply to a rigid body tree
model. The force matrix is an m-by-6 vector that has a row for each joint on the robot to
apply a six-element wrench. Use the externalForce function and specify the end
effector to properly assign the wrench to the correct row of the matrix. You can add
multiple force matrices together to apply multiple forces to one robot.

To calculate the joint torques that counter these external forces, use the
inverseDynamics funnction.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

 robotics.RigidBodyTree class

1-211

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for lbr.

q = homeConfiguration(lbr);

Set external force on link1. The input wrench vector is expressed in the base frame.

fext1 = externalForce(lbr,'link_1',[0 0 0.0 0.1 0 0]);

Set external force on the end effector, tool0. The input wrench vector is expressed in the
tool0 frame.

fext2 = externalForce(lbr,'tool0',[0 0 0.0 0.1 0 0],q);

Compute the joint torques required to balance the external forces. To combine the forces,
add the force matrices together. Joint velocities and accelerations are assumed to be zero
(input as []).

tau = inverseDynamics(lbr,q,[],[],fext1+fext2);

Display a Robot Model with Visual Geometries

You can import robots that have .stl files associated with the Unified Robot Description
format (URDF) file to describe the visual geometries of the robot. Each rigid body has an
individual visual geometry specified. The importrobot function parses to URDF file to
get the robot model and visual geometries. Use the show function to visualize the robot
model in a figure. You can then interact with the model by clicking components to inspect
them and right-clicking to toggle visibility.

Import a robot model as a URDF file. The .stl file locations must be properly specified in
this URDF. To add other .stl files to individual rigid bodies, see
robotics.RigidBody.addVisual.

robot = importrobot('iiwa14.urdf');

1 Classes — Alphabetical List

1-212

Visualize the robot with the associated visual model. Click bodies or frames to inspect
them. Right-click bodies to toggle visibility for each visual geometry.

show(robot)

ans =

 Axes (Primary) with properties:

 XLim: [-1.5000 1.5000]
 YLim: [-1.5000 1.5000]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Use GET to show all properties

 robotics.RigidBodyTree class

1-213

• “Build a Robot Step by Step”
• “Rigid Body Tree Robot Model”
• “Solve Inverse Kinematics for a Four-Bar Linkage”
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Plan a Reaching Trajectory With Multiple Kinematic Constraints”
• “Control LBR Manipulator Motion Through Joint Torque Commands”

1 Classes — Alphabetical List

1-214

References

[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA:
Addison-Wesley, 1989.

[2] Siciliano, Bruno, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics:
Modelling, Planning and Control. London: Springer, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use the syntax that specifies the 'MaxNumBodies' as a upper bound for adding bodies to
the robot model. You must also specify the DataFormat property as a name-value pair.
For example:

robot = robotics.RigidBodyTree('MaxNumBodies',15,'DataFormat','row')

To minimize data usage, limit the upper bound to a number close to the expected number
of bodies in the model. All data formats are supported for code generation. To use the
dynamics functions, the data format must be set to 'row' or 'column'.

Also, the show and showdetails functions do not support code generation.

See Also
importrobot | robotics.GeneralizedInverseKinematics |
robotics.InverseKinematics | robotics.Joint | robotics.RigidBody

Topics
“Build a Robot Step by Step”
“Rigid Body Tree Robot Model”

 robotics.RigidBodyTree class

1-215

“Solve Inverse Kinematics for a Four-Bar Linkage”
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2016b

1 Classes — Alphabetical List

1-216

rosactionclient
Create ROS action client

Description
Use the rosactionclient to connect to an action server using a SimpleActionClient
object and request the execution of action goals. You can get feedback on the execution
process and cancel the goal at anytime. The SimpleActionClient object encapsulates a
simple action client and enables you to track a single goal at a time.

Creation

Syntax
client = rosactionclient(actionname)
client = rosactionclient(actionname,actiontype)
[client,goalMsg] = rosactionclient(___)

client = robotics.ros.SimpleActionClient(node,actionname)
client = robotics.ros.SimpleActionClient(node,actionname,actiontype)

Description

client = rosactionclient(actionname) creates a client for the specified ROS
ActionName. The client determines the action type automatically. If the action is not
available, this function displays an error.

Use rosactionclient to connect to an action server and request the execution of action
goals. You can get feedback on the execution progress and cancel the goal at any time.

client = rosactionclient(actionname,actiontype) creates an action client
with the specified name and type (ActionType). If the action is not available, or the
name and type do no match, the function displays an error.

 rosactionclient

1-217

[client,goalMsg] = rosactionclient(___) returns a goal message to send the
action client created using any of the arguments from the previous syntaxes. The Goal
message is initialized with default values for that message.

If the ActionFcn, FeedbackFcn, and ResultFcn callbacks are defined, they are called
when the goal is processing on the action server. All callbacks associated with a
previously sent goal are disabled, but the previous goal is not canceled.

client = robotics.ros.SimpleActionClient(node,actionname) creates a
client for the specified ROS action name. node is the Node object that is connected to the
ROS network. The client determines the action type automatically. If the action is not
available, the function displays an error.

client = robotics.ros.SimpleActionClient(node,actionname,actiontype)
creates an action client with the specified name and type. You can get the type of an
action using rosaction type actionname.

Properties
ActionName — ROS action name
character vector

ROS action name, returned as a character vector. The action name must match one of
the topics that rosaction('list') outputs.

ActionType — Action type for a ROS action
character vector

Action type for a ROS action, returned as a character vector. You can get the action type
of an action using rosaction type <action_name>. For more details, see
rosaction.

IsServerConnected — Indicates if client is connected to ROS action server
false (default) | true

Indicator of whether the client is connected to a ROS action server, returned as false or
true. Use waitForServer to wait until the server is connected when setting up an
action client.

1 Classes — Alphabetical List

1-218

Goal — Tracked goal
ROS message

Tracked goal, returned as a ROS message. This message is the last goal message this
client sent. The goal message depends on the action type.

GoalState — Goal state
character vector

Goal state, returned as one of the following:

• 'pending' — Goal was received, but has not yet been accepted or rejected.
• 'active' — Goal was accepted and is running on the server.
• 'succeeded' — Goal executed successfully.
• 'preempted' — An action client canceled the goal before it finished executing.
• 'aborted' — The goal was aborted before it finished executing. The action server

typically aborts a goal.
• 'rejected' — The goal was not accepted after being in the 'pending' state. The

action server typically triggers this status.
• 'recalled' — A client canceled the goal while it was in the 'pending' state.
• 'lost' — An internal error occurred in the action client.

ActivationFcn — Activation function
@(~) disp('Goal is active.') (default) | function handle

Activation function, returned as a function handle. This function executes when
GoalState is set to 'active'. By default, the function displays 'Goal is active.'.
You can set the function to [] to have the action client do nothing upon activation.

FeedbackFcn — Feedback function
@(~,msg) disp(['Feedback: ', showdetails(msg)]) (default) | function handle

Feedback function, returned as a function handle. This function executes when a new
feedback message is received from the action server. By default, the function displays the
details of the message. You can set the function to [] to have the action client not give
any feedback.

 rosactionclient

1-219

ResultFcn — Result function
@(~,msg,s,~) disp(['Result with state ' s ': ', showdetails(msg)])
(default) | function handle

Result function, returned as a function handle. This function executes when the server
finishes executing the goal and returns a result state and message. By default, the
function displays the state and details of the message. You can set the function to [] to
have the action client do nothing once the goal is completed.

Object Functions
cancelGoal Cancel last goal sent by client
cancelAllGoals Cancel all goals on action server
rosmessage Create ROS messages
sendGoal Send goal message to action server
sendGoalAndWait Send goal message and wait for result
waitForServer Wait for action server to start

Examples

Setup a ROS Action Client and Execute an Action

This example shows how to create a ROS action client and execute the action. Action
types must be setup beforehand with an action server running.

You must have the '/fibonacci' action type setup. To run this action server use the
following command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

Connect to a ROS network. You must be connected to a ROS network to gather
information about what actions are available. Replace ipaddress with your network
address.

ipaddress = '192.168.154.131';
rosinit(ipaddress)

Initializing global node /matlab_global_node_68978 with NodeURI http://192.168.154.1:51256/

1 Classes — Alphabetical List

1-220

List actions available on the network. The only action setup on this network is the '/
fibonacci' action.

rosaction list

/fibonacci

Create an action client. Specify the action name.

[actClient,goalMsg] = rosactionclient('/fibonacci');

Wait for action client to connect to server.

waitForServer(actClient);

The fibonacci action will calculate the fibonacci sequence for a given order specified in
the goal message. The goal message was returned when creating the action client and
can be modified to send goals to the ROS action server.

goalMsg.Order = 8

goalMsg =

 ROS FibonacciGoal message with properties:

 MessageType: 'actionlib_tutorials/FibonacciGoal'
 Order: 8

 Use showdetails to show the contents of the message

Send goal and wait for its completion. Specify a timeout of 10 seconds to complete the
action.

[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg,10)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:

 rosactionclient

1-221

 Sequence : [0, 1, 1, 2, 3, 5]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Final state succeeded with result:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

resultMsg =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [10×1 int32]

 Use showdetails to show the contents of the message

resultState =

 1×9 char array

succeeded

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_68978 with NodeURI http://192.168.154.1:51256/

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

1 Classes — Alphabetical List

1-222

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

 rosactionclient

1-223

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

See Also
cancelGoal | rosaction | rosmessage | sendGoal | waitForServer

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

External Websites
ROS Actions

Introduced in R2016b

1 Classes — Alphabetical List

1-224

http://wiki.ros.org/actionlib

rospublisher
Publish message on a topic

Description
Use rospublisher to create a ROS publisher for sending messages via a ROS network.
To create ROS messages, use rosmessage. Send these messages via the ROS publisher
with the send function.

The Publisher object created by the function represents a publisher on the ROS
network. The object publishes a specific message type on a given topic. When the
Publisher object publishes a message to the topic, all subscribers to the topic receive
this message. The same topic can have multiple publishers and subscribers.

The publisher gets the topic message type from the topic list on the ROS master. When
the MATLAB global node publishes messages on that topic, ROS nodes that subscribe to
that topic receive those messages. If the topic is not on the ROS master topic list, this
function displays an error message. If the ROS master topic list already contains a
matching topic, the ROS master adds the MATLAB global node to the list of publishers
for that topic. To see a list of available topic names, at the MATLAB command prompt,
type rostopic list.

You can create a Publisher object using the rospublisher function, or by calling
robotics.ros.Publisher:

• rospublisher only works with the global node using rosinit. It does not require a
node object handle as an argument.

• robotics.ros.Publisher works with additional nodes that are created using
robotics.ros.Node. It requires a node object handle as the first argument.

 rospublisher

1-225

Creation

Syntax

Description

pub = rospublisher(topicname) creates a publisher for a topic specified as a
character vector and sets the TopicName. The topic must already exist on the ROS
master topic list with an established MessageType.

pub = rospublisher(topicname,msgtype) creates a publisher for a topic and adds
that topic to the ROS master topic list. The inputs are set to the TopicName and
MessageType properties of the publisher. If the topic already exists and msgtype differs
from the topic type on the ROS master topic list, the function displays an error message.

pub = rospublisher(___ ,Name,Value) provides additional options specified by one
or more Name,Value pair arguments using any of the arguments from previous
syntaxes. Name is the property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN). Properties not specified retain their
default values.

[pub,msg] = rospublisher(___) returns a message, msg, that you can send with
the publisher, pub. The message is initialized with default values. You can also get the
ROS message using the rosmessage function.

pub = robotics.ros.Publisher(node,topicname) creates a publisher for a topic
with name, topicname. node is the robotics.ros.Node object handle that this
publisher attaches to. If node is specified as [], the publisher tries to attach to the global
node.

pub = robotics.ros.Publisher(node,topicname,type) creates a publisher with
specified message type, type. If the topic already exists, MATLAB checks the message
type and displays an error if the input type differs. If the ROS master topic list already
contains a matching topic, the ROS master adds the MATLAB global node to the list of
publishers for that topic.

1 Classes — Alphabetical List

1-226

pub = robotics.ros.Publisher(___ , 'IsLatching',value) specifies if the
publisher is latching with a Boolean, value. If a publisher is latching, it saves the last
sent message and sends it to any new subscribers. By default, IsLatching is enabled.

Properties
TopicName — Name of the published topic
character vector

This property is read-only.

Name of the published topic, specified as a character vector. If the topic does not exist,
the object creates the topic using its associated message type.
Example: '/chatter'
Data Types: char

MessageType — Message type of published messages
character vector

This property is read-only.

Message type of published messages, specified as a character vector. This message type
remains associated with the topic and must be used for new messages published.
Example: 'std_msgs/String'
Data Types: char

IsLatching — Indicator of whether publisher is latching
true (default) | false

This property is read-only.

Indicator of whether publisher is latching, specified as true or false. A publisher that
is latching saves the last sent message and resends it to any new subscribers.
Data Types: logical

NumSubscribers — Number of subscribers
integer

 rospublisher

1-227

This property is read-only.

Number of subscribers to the published topic, specified as an integer.
Data Types: double

Object Functions
send Publish ROS message to topic
rosmessage Create ROS messages

Examples

Create a ROS Publisher and Send Data

Connect to a ROS network.

rosinit

Initializing ROS master on http://bat5823win64:54364/.
Initializing global node /matlab_global_node_55095 with NodeURI http://bat5823win64:54368/

Create publisher for the '/chatter' topic with the 'std_msgs/String' message type.

chatpub = rospublisher('/chatter','std_msgs/String');

Create a message to send. Specify the Data property.

msg = rosmessage(chatpub);
msg.Data = 'test phrase';

Send message via the publisher.

send(chatpub,msg);

Shutdown ROS network.

rosshutdown

1 Classes — Alphabetical List

1-228

Shutting down global node /matlab_global_node_55095 with NodeURI http://bat5823win64:54368/
Shutting down ROS master on http://bat5823win64:54364/.

Create ROS Publisher with rospublisher and View Properties

Create a ROS publisher and view the associated properties for the
robotics.ros.Publisher object. Add a subscriber to view the updated properties.

Start ROS master.

rosinit

Initializing ROS master on http://bat5823win64:54402/.
Initializing global node /matlab_global_node_72221 with NodeURI http://bat5823win64:54406/

Create a publisher and view its properties.

pub = rospublisher('/chatter','std_msgs/String');

topic = pub.TopicName
subCount = pub.NumSubscribers

topic =

 '/chatter'

subCount =

 0

Subscriber to the publisher topic and view the changes in the NumSubscribers
property.

sub = rossubscriber('/chatter');
pause(1)

subCount = pub.NumSubscribers

rosshutdown

subCount =

 rospublisher

1-229

 1

Shutting down global node /matlab_global_node_72221 with NodeURI http://bat5823win64:54406/
Shutting down ROS master on http://bat5823win64:54402/.

Publish Data Without A ROS Publisher

Connect to a ROS network.

rosinit

Initializing ROS master on http://bat5823win64:55061/.
Initializing global node /matlab_global_node_96994 with NodeURI http://bat5823win64:55065/

Create a message to send. Specify the Data property.

msg = rosmessage('std_msgs/String');
msg.Data = 'test phrase';

Send message via the '/chatter' topic.

rospublisher('/chatter',msg)

ans =

 []

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_96994 with NodeURI http://bat5823win64:55065/
Shutting down ROS master on http://bat5823win64:55061/.

Use ROS Publisher Object

Create a Publisher object using the class constructor.

Start the ROS master.

master = robotics.ros.Core;

1 Classes — Alphabetical List

1-230

Create a ROS node, which connects to the master.

node = robotics.ros.Node('/test1');

Create a publisher and send string data. The publisher attaches to the node object in the
first argument.

pub = robotics.ros.Publisher(node, '/robotname', 'std_msgs/String');
msg = rosmessage('std_msgs/String');
msg.Data = 'robot1';
send(pub,msg);

Clear the publisher and ROS node. Shut down the ROS master.

clear('pub','node')
clear('master')

• “Exchange Data with ROS Publishers and Subscribers”

See Also
Functions
rosmessage | send

Topics
“Exchange Data with ROS Publishers and Subscribers”

Introduced in R2015a

 rospublisher

1-231

rosrate
Execute loop at fixed frequency

Description
The robotics.ros.Rate object uses the robotics.Rate superclass to inherit most of
its properties and methods. The main difference is that robotics.ros.Rate uses the
ROS node as a source for time information. Therefore, it can use the ROS simulation or
wall clock time (see the IsSimulationTime property).

If rosinit creates a ROS master in MATLAB, the global node uses wall clock time.

The performance of the ros.Rate object and the ability to maintain the DesiredRate
value depends on the publishing of the clock information in ROS.

Tip The scheduling resolution of your operating system and the level of other system
activity can affect rate execution accuracy. As a result, accurate rate timing is limited to
100 Hz for execution of MATLAB code. To improve performance and execution speeds,
use code generation.

Creation

Syntax
rate = rosrate(desiredRate)
rate = robotics.ros.Rate(node,desiredRate)

Description
rate = rosrate(desiredRate) creates a robotics.ros.Rate object, which enables
you to execute a loop at a fixed frequency, DesiredRate. The time source is linked to the
time source of the global ROS node, which requires you to connect MATLAB to a ROS
network using rosinit.

1 Classes — Alphabetical List

1-232

rate = robotics.ros.Rate(node,desiredRate) creates a Rate object that
operates loops at a fixed rate based on the time source linked to the specified ROS node,
node.

Properties
DesiredRate — Desired execution rate
scalar

Desired execution rate of loop, specified as a scalar in Hz. When using waitfor, the loop
operates every DesiredRate seconds, unless the loop takes longer. It then begins the
next loop based on the specified OverRunAction.

DesiredPeriod — Desired time period between executions
scalar

Desired time period between executions, specified as a scalar in seconds. This property is
equal to the inverse of DesiredRate.

TotalElapsedTime — Elapsed time since construction or reset
scalar

Elapsed time since construction or reset, specified as a scalar in seconds.

LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default,
LastPeriod is set to NaN until waitfor is called for the first time. After the first call,
LastPeriod equals TotalElapsedTime.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — waits until the next time interval equal to a multiple of DesiredPeriod
• 'slip' — immediately executes the loop again

 rosrate

1-233

Each code section calls waitfor at the end of execution.

IsSimulationTime — Indicator if simulation or wall clock time is used
true | false

Indicator if simulation or wall clock time is used, returned as true or false. If true,
the Rate object is using the ROS simulation time to regulate the rate of loop execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods

1 Classes — Alphabetical List

1-234

reset Reset Rate object

Examples

Run Loop At Fixed Rate Using rosrate

Initialize the ROS master and node.

rosinit

Initializing ROS master on http://bat5823win64:55342/.
Initializing global node /matlab_global_node_46531 with NodeURI http://bat5823win64:55346/

Create a rate object that runs at 1 Hz.

r = rosrate(1);

Start loop that prints iteration and time elapsed. Use waitfor to pause the loop until
the next time interval. Reset r prior to the loop execution. Notice that each iteration
executes at a 1-second interval.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.001501
Iteration: 2 - Time Elapsed: 1.000506
Iteration: 3 - Time Elapsed: 2.000596
Iteration: 4 - Time Elapsed: 3.000775
Iteration: 5 - Time Elapsed: 4.001104
Iteration: 6 - Time Elapsed: 5.000941
Iteration: 7 - Time Elapsed: 6.000530
Iteration: 8 - Time Elapsed: 7.000623
Iteration: 9 - Time Elapsed: 8.000273
Iteration: 10 - Time Elapsed: 9.000623

Shut down the ROS network.

rosshutdown

 rosrate

1-235

Shutting down global node /matlab_global_node_46531 with NodeURI http://bat5823win64:55346/
Shutting down ROS master on http://bat5823win64:55342/.

Run Loop At Fixed Rate Using ROS Time

Initialize the ROS master and node.

rosinit
node = robotics.ros.Node('/testTime');

Initializing ROS master on http://bat5823win64:54640/.
Initializing global node /matlab_global_node_57644 with NodeURI http://bat5823win64:54644/
Using Master URI http://localhost:54640 from the global node to connect to the ROS master.

Create a ros.Rate object running at 20 Hz.

r = robotics.ros.Rate(node,20);

Reset the object to restart the timer and run the loop for 30 iteratons. Insert code you
want to run in the loop before calling waitfor.

reset(r)
for i = 1:30
 % User code goes here.
 waitfor(r);
end

Shutdown ROS node.

rosshutdown

Shutting down global node /matlab_global_node_57644 with NodeURI http://bat5823win64:54644/
Shutting down ROS master on http://bat5823win64:54640/.

• “Execute Code at a Fixed-Rate”

See Also
robotics.Rate | waitfor

Topics
“Execute Code at a Fixed-Rate”

1 Classes — Alphabetical List

1-236

Introduced in R2016a

 rosrate

1-237

rossubscriber
Subscribe to messages on a topic

Description
Use rossubscriber to create a ROS subscriber for receiving messages on the ROS
network. To send messages, use rospublisher. To wait for a new ROS message, use the
receive function with your created subscriber.

The Subscriber object created by the rossubscriber function represents a subscriber
on the ROS network. The Subscriber object subscribes to an available topic or to a topic
that it creates. This topic has an associated message type. Publishers can send messages
over the network that the Subscriber object receives.

You can create a Subscriber object by using the rossubscriber function, or by calling
robotics.ros.Subscriber:

• rossubscriber only works with the global node using rosinit. It does not require
a node object handle as an argument.

• robotics.ros.Subscriber works with additional nodes that are created using
robotics.ros.Node. It requires a node object handle as the first argument.

Creation

Description

sub = rossubscriber(topicname) subscribes to a topic with the given TopicName
specified as a character vector.The topic must already exist on the ROS master topic list
with an established message type. When ROS nodes publish messages on that topic,
MATLAB receives those messages through this subscriber.

sub = rossubscriber(topicname,msgtype) subscribes to a topic that has the
specified name, TopicName, and type, MessageType. If the topic list on the ROS master
does not include a topic with that specified name and type, it is added to the topic list.

1 Classes — Alphabetical List

1-238

Use this syntax to avoid errors when subscribing to a topic before a publisher has added
the topic to the topic list on the ROS master.

sub = rossubscriber(topicname,callback) specifies a callback function,
callback that runs when the subscriber object handle receives a topic message. Use this
syntax to avoid the blocking receive function. callback can be a single function handle
or a cell array. The first element of the cell array must be a function handle or a
character vector containing the name of a function. The remaining elements of the cell
array can be arbitrary user data that is passed to the callback function.

sub = rossubscriber(topicname, msgtype,callback) specifies a callback
function and subscribes to a topic that has the specified name, TopicName, and type,
MessageType.

sub = rossubscriber(___ ,Name,Value) provides additional options specified by
one or more Name,Value pair arguments using any of the arguments from previous
syntaxes. Name is the property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN). Properties not specified retain their
default values.

sub = robotics.ros.Subscriber(node,topicname) subscribes to a topic with
name, TopicName. node is the robotics.ros.Node object handle that this publisher
attaches to.

sub = robotics.ros.Subscriber(node,topicname,msgtype) specifies the
message type, MessageType, of the topic. If a topic with the same name exists with a
different message type, MATLAB creates a new topic with the given message type.

sub = robotics.ros.Subscriber(node,topicname,callback) specifies a
callback function, and optional data, to run when the subscriber object receives a topic
message. See NewMessageFcn for more information about the callback function.

sub = robotics.ros.Subscriber(node,topicname,type,callback) specifies the
topic name, message type, and callback function for the subscriber.

sub = robotics.ros.Subscriber(___ ,'BufferSize',value) specifies the queue
size in BufferSize for incoming messages. You can use any combination of previous
inputs with this syntax.

 rossubscriber

1-239

Properties
TopicName — Name of the subscribed topic
character vector

This property is read-only.

Name of the subscribed topic, specified as a character vector. If the topic does not exist,
the object creates the topic using its associated message type.
Example: '/chatter'
Data Types: char

MessageType — Message type of subscribed messages
character vector

This property is read-only.

Message type of subscribed messages, specified as a character vector. This message type
remains associated with the topic.
Example: 'std_msgs/String'
Data Types: char

LatestMessage — Latest message sent to the topic
Message object

Latest message sent to the topic, specified as a Message object. The Message object is
specific to the given MessageType. If the subscriber has not received a message, then the
Message object is empty.

BufferSize — Buffer size
1 (default) | scalar

Buffer size of the incoming message queue, specified as the comma-separated pair
consisting of 'BufferSize' and a scalar. If messages arrive faster and than your
callback can process them, they are deleted once the incoming queue is full.

NewMessageFcn — Callback property
function handle | cell array

1 Classes — Alphabetical List

1-240

Callback property, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a character vector representing a function
name. In subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = @subCallback;

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array. The
function header for the callback is:

function subCallback(src,msg,userData)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = {@subCallback,userData};

Object Functions
receive Wait for new ROS message
rosmessage Create ROS messages

Examples

Create A Subscriber and Get Data From ROS

Connect to a ROS network. Set up a sample ROS network. The '/scan' topic is being
published on the network.

rosinit
exampleHelperROSCreateSampleNetwork

Initializing ROS master on http://bat5823win64:55081/.
Initializing global node /matlab_global_node_85183 with NodeURI http://bat5823win64:55085/

 rossubscriber

1-241

Create a subscriber for the '/scan' topic. Wait for the subscriber to register with the
master.

sub = rossubscriber('/scan');
pause(1);

Receive data from the subscriber as a ROS mesasge. Specify a 10 second timeout.

msg2 = receive(sub,10)

msg2 =

 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: -0.5216
 AngleMax: 0.5243
 AngleIncrement: 0.0016
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_85183 with NodeURI http://bat5823win64:55085/
Shutting down ROS master on http://bat5823win64:55081/.

Create A Subscriber That Uses A Callback Function

You can trigger callback functions when subscribers receive messages. Specify the
callback when you create it or use the NewMessageFcn property.

Connect to a ROS network.

1 Classes — Alphabetical List

1-242

rosinit

Initializing ROS master on http://bat5823win64:54604/.
Initializing global node /matlab_global_node_36111 with NodeURI http://bat5823win64:54608/

Setup a publisher to publish a message to the '/chatter' topic. This topic is used to
trigger the subscriber callback. Specify the Data property of the message. Wait 1 second
to allow the publisher to register with the network.
pub = rospublisher('/chatter','std_msgs/String');
msg = rosmessage(pub);
msg.Data = 'hello world';
pause(1)

Setup a subscriber with a specified callback function. The
exampleHelperROSChatterCallback function displays the Data inside the received
message.
sub = rossubscriber('/chatter',@exampleHelperROSChatterCallback);
pause(1)

Send message via the publisher. The subscriber should execute the callback to display
the new message. Wait for the message to be received.
send(pub,msg);
pause(1)

Chatter Callback message data:

ans =

 'hello world'

Shutdown ROS network.
rosshutdown

Shutting down global node /matlab_global_node_36111 with NodeURI http://bat5823win64:54608/
Shutting down ROS master on http://bat5823win64:54604/.

Use ROS Subscriber Object

Use a ROS Subscriber object to receive messages over the ROS network.

 rossubscriber

1-243

Start the ROS master and node.

master = robotics.ros.Core;
node = robotics.ros.Node('/test');

Create a publisher and subscriber to send and receive a message over the ROS network.

pub = robotics.ros.Publisher(node,'/chatter','std_msgs/String');
pause(1)
sub = robotics.ros.Subscriber(node,'/chatter','std_msgs/String');

Send a message over the network.

msg = rosmessage('std_msgs/String');
msg.Data = 'hello world';
send(pub,msg)

View the message data using the LatestMesasge property of the Subscriber object.

pause(1)
sub.LatestMessage

ans =

 ROS String message with properties:

 MessageType: 'std_msgs/String'
 Data: 'hello world'

 Use showdetails to show the contents of the message

Clear the publisher, subscriber, and ROS node. Shut down the ROS master.

clear('pub','sub','node')
clear('master')

• “Exchange Data with ROS Publishers and Subscribers”

See Also
receive | rosmessage | rospublisher

1 Classes — Alphabetical List

1-244

Topics
“Exchange Data with ROS Publishers and Subscribers”

Introduced in R2015a

 rossubscriber

1-245

rossvcclient
Connect to ROS service server

Description
Use rossvcclient or robotics.ros.ServiceClient to create a ROS service client
object. This service client uses a persistent connection to send requests to, and receive
responses from, a ROS service server. The connection persists until the service client is
deleted or the service server becomes unavailable.

Use the robotics.ros.ServiceClient syntax when connecting to a specific ROS
node.

Creation

Syntax
client = rossvcclient(servicename)
client = rossvcclient(servicename,Name,Value)

[client,reqmsg] = rossvcclient(___)

client = robotics.ros.ServiceClient(node, name)
client = robotics.ros.ServiceClient(node, name,'Timeout',timeout)

Description
client = rossvcclient(servicename) creates a service client with the given
ServiceName that connects to, and gets its ServiceType from, a service server. This
command syntax blocks the current MATLAB program from running until it can connect
to the service server.

client = rossvcclient(servicename,Name,Value) provides additional options
specified by one or more Name,Value pair arguments. Name must appear inside single

1 Classes — Alphabetical List

1-246

quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

[client,reqmsg] = rossvcclient(___) returns a new service request message in
reqmsg, using any of the arguments from previous syntaxes. The message type of
reqmsg is determined by the service that client is connected to. The message is
initialized with default values. You can also create the request message using
rosmessage wutg.

client = robotics.ros.ServiceClient(node, name) creates a service client that
connects to a service server. The client gets its service type from the server. The service
client attaches to the robotics.ros.Node object handle, node.

client = robotics.ros.ServiceClient(node, name,'Timeout',timeout)
specifies a timeout period in seconds for the client to connect the service server.

Properties
ServiceName — Name of the service
character vector

This property is read-only.

Name of the service, specified as a character vector.
Example: '/gazebo/get_model_state'

ServiceType — Type of service
character vector

This property is read-only.

Type of service, specified as a character vector.
Example: 'gazebo_msgs/GetModelState'

Object Functions
rosmessage Create ROS messages

 rossvcclient

1-247

call Call the ROS service server and receive a response

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_02319 with NodeURI http://AH-SRADFORD:61005/

Set up a sevice server and client.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback);
client = rossvcclient('/test');

Call service server with default message.

response = call(client)

A service client is calling

response =

 ROS EmptyResponse message with properties:

 MessageType: 'std_srvs/EmptyResponse'

 Use showdetails to show the contents of the message

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_02319 with NodeURI http://AH-SRADFORD:61005/
Shutting down ROS master on http://AH-SRADFORD:11311/.

1 Classes — Alphabetical List

1-248

Use ROS Service Server with ServiceServer and ServiceClient Objects

Create a ROS service serve by creating a ServiceServer object and use
ServiceClient objects to request information over the network. The callback function
used by the server takes a string, reverses it, and returns the reversed string.

Start the ROS master and node.

master = robotics.ros.Core;
node = robotics.ros.Node('/test');

Create a service server. This server expects a string as a request and responds with a
string based on the callback.

server = robotics.ros.ServiceServer(node,'/data/string',...
 'roseus/StringString');

Create a callback function. This function takes an input string as the Str property of
req and returns it as the Str property of resp. You must create and save this function
separately. req is a ROS message you create using rosmessage.

% Copyright 2015 The MathWorks, Inc.

function [resp] = flipString(~,req,resp)
% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.
resp.Str = fliplr(req.Str);
end

Save this code as a file named flipString.m to a folder on your MATLAB® path.

Assign the callback function for incoming service calls.

server.NewRequestFcn = @flipString;

Create a service client and connect to the service server. Create a request message based
on the client.

client = robotics.ros.ServiceClient(node,'/data/string');
request = rosmessage(client);
request.Str = 'hello world';

 rossvcclient

1-249

Send a service request and wait for a response. Specify that the service waits 3 seconds
for a response.

response = call(client,request,'Timeout',3)

response =

 ROS StringStringResponse message with properties:

 MessageType: 'roseus/StringStringResponse'
 Str: 'dlrow olleh'

 Use showdetails to show the contents of the message

The response is a flipped string from the request message.

Clear the service client, service server, and ROS node. Shut down the ROS master.

clear('client', 'server', 'node')
clear('master')

• “Call and Provide ROS Services”

See Also
call | rosmessage | rosservice | rossvcserver

Topics
“Call and Provide ROS Services”

Introduced in R2015a

1 Classes — Alphabetical List

1-250

rossvcserver
Create ROS service server

Description
Use rossvcserver or robotics.ros.ServiceServer to create a ROS service server
that can receive requests from, and send responses to, a ROS service client. You must
create the service server before creating the service client (see ROSSVCCLIENT).

When you create the service client, it establishes a connection to the server. The
connection persists while both client and server exist and can reach each other. When
you create the service server, it registers itself with the ROS master. To get a list of
services, or to get information about a particular service that is available on the current
ROS network, use the rosservice function.

The service has an associated message type and contains a pair of messages: one for the
request and one for the response. The service server receives a request, constructs an
appropriate response based on a call function, and returns it to the client. The behavior
of the service server is inherently asynchronous, because it becomes active only when a
service client connects to the ROS network and issues a call.

Use the robotics.ros.ServiceServer syntax when connecting to a specific ROS
node.

Creation

Syntax
server = rossvcserver(servicename,svctype)
server = rossvcserver(servicename,svctype,callback)

server = robotics.ros.ServiceServer(node, name,type)
server = robotics.ros.ServiceServer(node, name,type,callback)

 rossvcserver

1-251

Description
server = rossvcserver(servicename,svctype) creates a service server object
with the specified ServiceType available in the ROS network under the name
ServiceName. The service object cannot respond to service requests until you specify a
function handle callback, NewMessageFcn.

server = rossvcserver(servicename,svctype,callback) specifies the callback
function that constructs a response when the server receives a request. callback
specifies the NewMessageFcn property.

server = robotics.ros.ServiceServer(node, name,type) creates a service
server that attaches to the ROS node, node. The server becomes available through the
specified service name and type once a callback function handle is specified in
NewMessageFcn.

server = robotics.ros.ServiceServer(node, name,type,callback) specifies
the callback function which is set to the NewMessageFcn property.

Properties
ServiceName — Name of the service
character vector

This property is read-only.

Name of the service, specified as a character vector.
Example: '/gazebo/get_model_state'

ServiceType — Type of service
character vector

This property is read-only.

Type of service, specified as a character vector.
Example: 'gazebo_msgs/GetModelState'

NewMessageFcn — Callback property
function handle | cell array

1 Classes — Alphabetical List

1-252

Callback property, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a character vector representing a function
name. In subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = @subCallback;

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array. The
function header for the callback is:

function subCallback(src,msg,userData)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = {@subCallback,userData};

Object Functions
rosmessage Create ROS messages

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_02319 with NodeURI http://AH-SRADFORD:61005/

Set up a sevice server and client.

 rossvcserver

1-253

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback);
client = rossvcclient('/test');

Call service server with default message.

response = call(client)

A service client is calling

response =

 ROS EmptyResponse message with properties:

 MessageType: 'std_srvs/EmptyResponse'

 Use showdetails to show the contents of the message

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_02319 with NodeURI http://AH-SRADFORD:61005/
Shutting down ROS master on http://AH-SRADFORD:11311/.

• “Call and Provide ROS Services”

See Also
call | rosmessage | rossvcclient

Topics
“Call and Provide ROS Services”

Introduced in R2015a

1 Classes — Alphabetical List

1-254

rostf
Receive, send, and apply ROS transformations

Description
Calling rostf creates a ROS TransformationTree object, which allows you to access
the tf coordinate transformations that are shared on the ROS network. You can receive
transformations and apply them to different entities. You can also send transformations
and share them with the rest of the ROS network.

ROS uses the tf transform library to keep track of the relationship between multiple
coordinate frames. The relative transformations between these coordinate frames is
maintained in a tree structure. Querying this tree lets you transform entities like poses
and points between any two coordinate frames. To access available frames use the
syntax:

tfTree.AvailableFrames

Use the robotics.ros.TransformationTree syntax when connecting to a specific
ROS node, otherwise use rostf to create the transformation tree.

Creation

Syntax
tfTree = rostf

trtree = robotics.ros.TransformationTree(node)

Description

tfTree = rostf creates a ROS TransformationTree object.

 rostf

1-255

trtree = robotics.ros.TransformationTree(node) creates a ROS
transformation tree object handle that the transformation tree is attached to. node is the
node connected to the ROS network that publishes transformations.

Properties
AvailableFrames — List of all available coordinate frames
cell array

This property is read-only.

List of all available coordinate frames, specified as a cell array. This list of available
frames updates if new transformations are received by the transformation tree object.
Example: {'camera_center';'mounting_point';'robot_base'}
Data Types: cell

LastUpdateTime — Time when the last transform was received
ROS Time object

This property is read-only.

Time when the last transform was received, specified as a ROS Time object.

BufferTime — Length of time transformations are buffered
10 (default) | scalar

This property is read-only.

Length of time transformations are buffered, specified as a scalar in seconds. If you
change the buffer time from the current value, the transformation tree and all
transformations are reinitalized. You must wait the buffer time to get a fully buffered
transformation tree.

Object Functions
waitForTransform Wait until a transformation is available
getTransform Retrieve the transformation between two coordinate frames
transform Transform message entities into target coordinate frame

1 Classes — Alphabetical List

1-256

sendTransform Send transformation to ROS network

Examples

Create a ROS Transformation Tree

Connect to a ROS network and create a transformation tree.

Connect to a ROS network. Specify the IP address.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_67363 with NodeURI http://192.168.154.1:49191/

Create a transformation tree. Use the AvailableFrames property to see the
transformation frames available. These transformations were speicfied separately prior
to connecting to the network.

tree = rostf;
pause(1);
tree.AvailableFrames

ans =

 35×1 cell array

 'base_footprint'
 'base_link'
 'camera_depth_frame'
 'camera_depth_optical_frame'
 'camera_link'
 'camera_rgb_frame'
 'camera_rgb_optical_frame'
 'caster_back_link'
 'caster_front_link'
 'cliff_sensor_front_link'
 'cliff_sensor_left_link'
 'cliff_sensor_right_link'
 'gyro_link'
 'odom'
 'plate_bottom_link'

 rostf

1-257

 'plate_middle_link'
 'plate_top_link'
 'pole_bottom_0_link'
 'pole_bottom_1_link'
 'pole_bottom_2_link'
 'pole_bottom_3_link'
 'pole_bottom_4_link'
 'pole_bottom_5_link'
 'pole_kinect_0_link'
 'pole_kinect_1_link'
 'pole_middle_0_link'
 'pole_middle_1_link'
 'pole_middle_2_link'
 'pole_middle_3_link'
 'pole_top_0_link'
 'pole_top_1_link'
 'pole_top_2_link'
 'pole_top_3_link'
 'wheel_left_link'
 'wheel_right_link'

Use TransformationTree Object

Create a ROS transformation tree. You can then view or use transformation information
for different coordinate frames setup in the ROS network.

Start ROS network and broadcast sample transformation data.

rosinit
node = robotics.ros.Node('/testTf');
exampleHelperROSStartTfPublisher

Initializing ROS master on http://bat5823win64:55379/.
Initializing global node /matlab_global_node_70602 with NodeURI http://bat5823win64:55383/
Using Master URI http://localhost:55379 from the global node to connect to the ROS master.

Retrieve the TransformationTree object. Pause to wait for tftree to update.

tftree = robotics.ros.TransformationTree(node);
pause(1)

View available coordinate frames and the time when they were last received.

1 Classes — Alphabetical List

1-258

frames = tftree.AvailableFrames
updateTime = tftree.LastUpdateTime

frames =

 3x1 cell array

 {'camera_center' }
 {'mounting_point'}
 {'robot_base' }

updateTime =

 ROS Time with properties:

 Sec: 1.5043e+09
 Nsec: 401000000

Wait for the transform between two frames, 'camera_center' and 'robot_base'.
This will wait until the transformation is valid and block all other operations. A time out
of 5 seconds is also given.

waitForTransform(tftree,'robot_base','camera_center',5)

Define a point in the camer's coordinate frame.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_center';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Tranform the point into the 'base_link' frame.

tfpt = transform(tftree, 'robot_base', pt)

tfpt =

 ROS PointStamped message with properties:

 MessageType: 'geometry_msgs/PointStamped'

 rostf

1-259

 Header: [1x1 Header]
 Point: [1x1 Point]

 Use showdetails to show the contents of the message

Display the transformed point coordinates.

tfpt.Point

ans =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 1.2000
 Y: 1.5000
 Z: -2.5000

 Use showdetails to show the contents of the message

Clear ROS node. Shut down ROS master.

clear('node')
rosshutdown

Shutting down global node /matlab_global_node_70602 with NodeURI http://bat5823win64:55383/
Shutting down ROS master on http://bat5823win64:55379/.

• “Access the tf Transformation Tree in ROS”

See Also
getTransform | sendTransform | transform | waitForTransform

Topics
“Access the tf Transformation Tree in ROS”

Introduced in R2015a

1 Classes — Alphabetical List

1-260

rostime
Access ROS time functionality

Description
A ROS Time object representing and instance of time in seconds and nanoseconds. This
time can be based off your system time, the ROS simulation time, or an arbitary time.

Creation

Syntax

Description

time = rostime(totalSecs) initializes the time values for seconds and nanoseconds
based on totalSecs, which represents the time in seconds as a floating-point number.

time = rostime(secs,nsecs) initializes the time values for seconds and nanoseconds
individually. Both inputs must be integers. Large values for nsecs are wrapped
automatically with the remainder added to secs.

time = rostime('now') returns the current ROS time. If the use_sim_time ROS
parameter is set to true, the rostime returns the simulation time published on the
clock topic. Otherwise, the function returns the system time of your machine. time is a
ROS Time object. If no output argument is given, the current time (in seconds) is printed
to the screen.

rostime can be used to timestamp messages or to measure time in the ROS network.

[time,issimtime] = rostime('now') also returns a Boolean that indicates if time
is in simulation time (true) or system time (false).

 rostime

1-261

time = rostime('now','system') always returns the system time of your machine,
even if ROS publishes simulation time on the clock topic. If no output argument is
given, the system time (in seconds) is printed to the screen.

The system time in ROS follows the Unix or POSIX time standard. POSIX time is
defined as the time that has elapsed since 00:00:00 Coordinated Universal Time (UTC), 1
January 1970, not counting leap seconds.

Properties
totalSecs — Total time
0 (default) | scalar

Total time, specified as a floating-point scalar. The integer portion is set to the Sec
property with the remainder applied to Nsec property of the Time object.

Sec — Whole seconds
0 (default) | positive integer

Whole seconds, specified as a positive integer.

Note The maximum and minimum values for secs are [0, 4294967294].

Nsec — Nanoseconds
0 (default) | positive integer

Nanoseconds, specified as a positive integer. It this value is greater than or equal to 109,
then the value is then wrapped and the remainders are added to the value of Sec.

Examples

Get Current ROS Time

Connect to a ROS network.

rosinit

1 Classes — Alphabetical List

1-262

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_00466 with NodeURI http://AH-SRADFORD:64390/

Get current ROS Time. You can also check whether is it system time by getting the
issim output.

[t,issim] = rostime('now')

t =

 ROS Time with properties:

 Sec: 1.4734e+09
 Nsec: 408000000

issim =

 logical

 0

Timestamp ROS Message Data

Create a stamped ROS message. Specify the Header.Stamp property with the current
system time.

point = rosmessage('geometry_msgs/PointStamped');
point.Header.Stamp = rostime('now','system');

ROS Time to MATLAB Time Example

This example shows how to convert current ROS time into a MATLAB® standard time.
The ROS Time object is first converted to a double in seconds, then to the specified
MATLAB time.

% Sets up ROS network and stores ROS time
rosinit
t = rostime('now');

% Converts ROS time to a double in seconds

 rostime

1-263

secondtime = double(t.Sec)+double(t.Nsec)*10^-9;

% Sets time to a specified MATLAB format
time = datetime(secondtime, 'ConvertFrom','posixtime')

% Shuts down ROS network
rosshutdown

Initializing ROS master on http://bat5823win64:55025/.
Initializing global node /matlab_global_node_33332 with NodeURI http://bat5823win64:55029/

time =

 datetime

 01-Sep-2017 20:57:02

Shutting down global node /matlab_global_node_33332 with NodeURI http://bat5823win64:55029/
Shutting down ROS master on http://bat5823win64:55025/.

Get Seconds From A Time Object

Use the seconds function to get the total seconds of a Time object from its Secs and
Nsecs properties.

Create a Time object.

time = rostime(1,860000000)

time =

 ROS Time with properties:

 Sec: 1
 Nsec: 860000000

Get the total seconds from the time object.
secs = seconds(time)

secs =

1 Classes — Alphabetical List

1-264

 1.8600

See Also
rosduration | rosmessage | seconds

Introduced in R2015a

 rostime

1-265

robotics.VectorFieldHistogram System object
Package: robotics

Avoid obstacles using vector field histogram

Description
The robotics.VectorFieldHistogram System objectenables your robot to avoid
obstacles based on range sensor data using vector field histograms (VFH) . Given laser
scan readings and a target direction to drive toward, the object computes an obstacle-free
steering direction.

VectorFieldHistogram specifically uses the VFH+ algorithm to compute an obstacle-
free direction. First, the algorithm takes the ranges and angles from laser scan data and
builds a polar histogram for obstacle locations. Then, the input histogram thresholds are
used to calculate a binary histogram that indicates occupied and free directions. Finally,
the algorithm computes a masked histogram, which is computed from the binary
histogram based on the minimum turning radius of the robot.

The algorithm selects multiple steering directions based on the open space and possible
driving directions. A cost function, with weights corresponding to the previous, current,
and target directions, calculates the cost of different possible directions. The object then
returns an obstacle-free direction with minimal cost. Using the obstacle-free direction,
you can input commands to move your robot in that direction.

To use this object for your own application and environment, you must tune the
properties of the algorithm. Property values depend on the type of robot, the range
sensor, and the hardware you use.

To find an obstacle-free steering direction:

1 Create the robotics.VectorFieldHistogram object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
(MATLAB).

1 Classes — Alphabetical List

1-266

Creation

Syntax
VFH = robotics.VectorFieldHistogram
VFH = robotics.VectorFieldHistogram(Name,Value)

Description

VFH = robotics.VectorFieldHistogram returns a vector field histogram object that
computes the obstacle-free steering direction using the VFH+ algorithm.

VFH = robotics.VectorFieldHistogram(Name,Value) returns a vector field
histogram object with additional options specified by one or more Name,Value pairs.
Name is the property name and Value is the corresponding value. Name must appear
inside single quotes (' '). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Properties not specified retain their
default values.

Properties
NumAngularSectors — Number of angular sectors in histogram
180 (default) | positive integer

Number of angular sectors in the vector field histogram, specified as a scalar. This
property defines the number of bins used to create the histograms. This property is non-
tunable. You can only set this when the object is initialized.

DistanceLimits — Limits for range readings
[0.05 2] (default) | 2-element vector

Limits for range readings, specified as a 2-element vector with elements measured in
meters. The range readings specified when calling the object are considered only if they
fall within the distance limits. Use the lower distance limit to ignore false positives from
poor sensor performance at lower ranges. Use the upper limit to ignore obstacles that are
too far from the robot.

 robotics.VectorFieldHistogram System object

1-267

RobotRadius — Radius of robot
0.1 (default) | scalar

Radius of the robot in meters, specified as a scalar. This dimension defines the smallest
circle that can circumscribe your robot. The robot radius is used to account for robot size
when computing the obstacle-free direction.

SafetyDistance — Safety distance around robot
0.1 (default) | scalar

Safety distance around the robot, specified as a scalar in meters. This is a safety distance
to leave around the robot position in addition to the value of the RobotRadius
parameter. The sum of the robot radius and the safety distance is used to compute the
obstacle-free direction.

MinTurningRadius — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius in meters for the robot moving at its current speed, specified as
a scalar.

TargetDirectionWeight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a scalar. To
follow a target direction, set this weight to be higher than the sum of the
CurrentDirectionWeight and PreviousDirectionWeight properties. To ignore the
target direction cost, set this weight to zero.

CurrentDirectionWeight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the robot in the current heading direction, specified as a
scalar. Higher values of this weight produce efficient paths. To ignore the current
direction cost, set this weight to zero.

PreviousDirectionWeight — Cost function weight for previous direction
2 (default) | scalar

Cost function weight for moving in the previously selected steering direction, specified as
a scalar. Higher values of this weight produces smoother paths. To ignore the previous
direction cost, set this weight to zero.

1 Classes — Alphabetical List

1-268

HistogramThresholds — Thresholds for binary histogram computation
[3 10] (default) | 2-element vector

Thresholds for binary histogram computation, specified as a 2-element vector. The
algorithm uses these thresholds to compute the binary histogram from the polar obstacle
density. Polar obstacle density values higher than the upper threshold are represented as
occupied space (1) in the binary histogram. Values smaller than the lower threshold are
represented as free space (0). Values that fall between the limits are set to the values in
the previous binary histogram, with the default being free space (0).

UseLidarScan — Use lidarScan object as scan input
false (default) | true

Use lidarScan object as scan input, specified as either true or false.

Usage

Syntax
steeringDir = vfh(scan,targetDir)
steeringDir = vfh(ranges,angles,targetDir)

Description

steeringDir = vfh(scan,targetDir) finds an obstacle-free steering direction using
the VFH+ algorithm for the input lidarScan object, scan. A target direction is given
based on the target location.

To enable this syntax, you must set the UseLidarScan property to true. For example:

mcl = robotics.MonteCarloLocalization('UseLidarScan','true');
...
[isUpdated,pose,covariance] = mcl(odomPose,scan);

steeringDir = vfh(ranges,angles,targetDir) defines the lidar scan with two
vectors: ranges and angles.

 robotics.VectorFieldHistogram System object

1-269

Input Arguments

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Dependencies

To use this argument, you must set the UseLidarScan property to true.

mcl.UseLidarScan = true;

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are
distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the
specific angles of the given ranges. The vector must be the same length as the
corresponding ranges vector.

targetDir — Target direction for robot
scalar

Target direction for the robot, specified as a scalar in radians. The forward direction of
the robot is considered zero radians, with positive angles measured counterclockwise.

Output Arguments

steeringDir — Steering direction for robot
scalar

Steering direction for the robot, specified as a scalar in radians. This obstacle-free
direction is calculated based on the VFH+ algorithm. The forward direction of the robot is
considered zero radians, with positive angles measured counterclockwise.

1 Classes — Alphabetical List

1-270

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to robotics.VectorFieldHistogram
show Display VectorFieldHistogram information in figure window

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
getNumInputs Number of inputs required to call the System object
getNumOutputs Number of outputs from calling the System object
isLocked Determine if System object is locked
release Release resources and allow changes to System object property values

and input characteristics
reset Reset internal states of System object

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a VectorFieldHistogram object.

 vfh = robotics.VectorFieldHistogram;

Input laser scan data and target direction.

ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Compute an obstacle-free steering direction.

 robotics.VectorFieldHistogram System object

1-271

steeringDir = vfh(ranges,angles,targetDir)

steeringDir =

 -0.8014

Visualize the VectorFieldHistogram computation.

h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)

• “Obstacle Avoidance Using TurtleBot”

References

[1] Borenstein, J., and Y. Koren. "The Vector Field Histogram - Fast Obstacle Avoidance
for Mobile Robots." IEEE Journal of Robotics and Automation. Vol. 7, Number 3,
1991, pp.278–88.

1 Classes — Alphabetical List

1-272

[2] Ulrich, I., and J. Borenstein. "VFH : Reliable Obstacle Avoidance for Fast Mobile
Robots." Proceedings. 1998 IEEE International Conference on Robotics and
Automation. (1998): 1572–1577.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

For additional information about code generation for System objects, see “System Objects
in MATLAB Code Generation” (MATLAB Coder)

See Also
lidarScan | robotics.VectorFieldHistogram.reset |
robotics.VectorFieldHistogram.show

Topics
“Obstacle Avoidance Using TurtleBot”
“Vector Field Histogram”

Introduced in R2015b

 robotics.VectorFieldHistogram System object

1-273

Functions — Alphabetical List

2

angdiff
Difference between two angles

Syntax
delta = angdiff(alpha,beta)

delta = angdiff(alpha)

Description
delta = angdiff(alpha,beta) calculates the difference between the angles alpha
and beta. This function subtracts alpha from beta with the result wrapped on the
interval [-pi,pi]. You can specify the input angles as single values or as arrays of
angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of
alpha along the first dimension whose size does not equal 1. If alpha is a vector of
length n, the first entry is subtracted from the second, the second from the third, etc. The
output, delta, is a vector of length n-1. If alpha is an m-by-n matrix with m greater
than 1, the output, delta, will be a matrix of size m-1-by-n.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)

d =

2 Functions — Alphabetical List

2-2

 3.1416

Calculate Difference Between Two Angle Arrays

d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])

d =

 1.5708 -0.7854 -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];
d = angdiff(angles)

d =

 -1.5708 -0.7854 0.7854

Input Arguments
alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is
the angle that is subtracted from beta when specified.
Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the
same size as alpha. This is the angle that alpha is subtracted from when specified.

 angdiff

2-3

Example: pi/2

Output Arguments
delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is
wrapped to the interval [-pi,pi].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2015a

2 Functions — Alphabetical List

2-4

apply
Transform message entities into target frame

Syntax
tfentity = apply(tfmsg,entity)

Description
tfentity = apply(tfmsg,entity) applies the transformation represented by the
'TransformStamped' ROS message to the input message object entity.

This function determines the message type of entity and apples the appropriate
transformation method to it. If the object cannot handle a particular message type, then
MATLAB displays an error message.

If you only want to use the most current transformation, call transform instead. If you
want to store a transformation message for later use, callgetTransform and then call
apply.

Examples

Apply A Transformation To A Point

Connect to a ROS network to get a TransformStamped ROS message. Specify the IP
address to connect. Create a trnasformation tree and get the transformation between
desired frames.

rosinit('192.168.154.131')
tftree = rostf;
pause(1);
tform = getTransform(tftree,'base_link','camera_link',...
 rostime('now'),'Timeout',5);

 apply

2-5

Initializing global node /matlab_global_node_18977 with NodeURI http://192.168.154.1:56952/

Create a ROS Point message and apply the transformation. You could also get point
messages off the ROS network.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

tfpt = apply(tform,pt);

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_18977 with NodeURI http://192.168.154.1:56952/

Input Arguments
tfmsg — Transformation message
TransformStamped ROS message handle

Transformation message, specified as a TransformStamped ROS message handle. The
tfmsg is a ROS message of type: geometry_msgs/TransformStamped.

entity — ROS message
Message object handle

ROS message, specified as a Message object handle.

Supported messages are:

• geometry_msgs/PointStamped
• geometry_msgs/PoseStamped
• geometry_msgs/PointCloud2Stamped
• geometry_msgs/QuaternionStamped
• geometry_msgs/Vector3Stamped

2 Functions — Alphabetical List

2-6

Output Arguments
tfentity — Transformed ROS message
Message object handle

Transformed ROS message, returned as a Message object handle.

See Also
getTransform | transform

Introduced in R2015a

 apply

2-7

axang2quat
Convert axis-angle rotation to quaternion

Syntax
quat = axang2quat(axang)

Description
quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to
quaternion, quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];
quat = axang2quat(axang)

quat =

 0.7071 0.7071 0 0

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

2 Functions — Alphabetical List

2-8

Example: [1 0 0 pi/2]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2axang

Introduced in R2015a

 axang2quat

2-9

axang2rotm
Convert axis-angle rotation to rotation matrix

Syntax
rotm = axang2rotm(axang)

Description
rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with
the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];
rotm = axang2rotm(axang)

rotm =

 0.0000 0 1.0000
 0 1.0000 0
 -1.0000 0 0.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

2 Functions — Alphabetical List

2-10

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2axang

Introduced in R2015a

 axang2rotm

2-11

axang2tform
Convert axis-angle rotation to homogeneous transformation

Syntax
tform = axang2tform(axang)

Description
tform = axang2tform(axang) converts a rotation given in axis-angle form, axang, to
a homogeneous transformation matrix, tform. When using the transformation matrix,
premultiply it with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation

axang = [1 0 0 pi/2];
tform = axang2tform(axang)

tform =

 1.0000 0 0 0
 0 0.0000 -1.0000 0
 0 1.0000 0.0000 0
 0 0 0 1.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

2 Functions — Alphabetical List

2-12

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the
coordinates to be formed (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2axang

Introduced in R2015a

 axang2tform

2-13

call
Call the ROS service server and receive a response

Syntax
response = call(serviceclient)
response = call(serviceclient,requestmsg)
response = call(___ ,Name,Value)

Description
response = call(serviceclient) sends a default service request message and
waits for a service response. The default service request message is an empty message
of type serviceclient.ServiceType.

response = call(serviceclient,requestmsg) specifies a service request message,
requestmsg, to be sent to the service.

response = call(___ ,Name,Value) provides additional options specified by one or
more Name,Value pair arguments, using any of the arguments from the previous
syntaxes. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Examples

Call Service Client with Default Message

Connect to a ROS network.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_02319 with NodeURI http://AH-SRADFORD:61005/

2 Functions — Alphabetical List

2-14

Set up a sevice server and client.

server = rossvcserver('/test', 'std_srvs/Empty', @exampleHelperROSEmptyCallback);
client = rossvcclient('/test');

Call service server with default message.

response = call(client)

A service client is calling

response =

 ROS EmptyResponse message with properties:

 MessageType: 'std_srvs/EmptyResponse'

 Use showdetails to show the contents of the message

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_02319 with NodeURI http://AH-SRADFORD:61005/
Shutting down ROS master on http://AH-SRADFORD:11311/.

Call for Response Using Specific Request Message

Connect to a ROS network.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_75695 with NodeURI http://AH-SRADFORD:61537/

Set up a sevice server and client. This server takes the sum of two integers and is based
on a ROS service tutorial.

sumserver = rossvcserver('/sum','roscpp_tutorials/TwoInts',@exampleHelperROSSumCallback);
sumclient = rossvcclient('/sum');

Get the request message for the client and modify the parameters.

 call

2-15

reqMsg = rosmessage(sumclient);
reqMsg.A = 2;
reqMsg.B = 1;

Call service and get response. The response should be the sum of the two integers given
in the request message. Wait 5 seconds for the service to timeout.

response = call(sumclient,reqMsg,'Timeout',5)

response =

 ROS TwoIntsResponse message with properties:

 MessageType: 'roscpp_tutorials/TwoIntsResponse'
 Sum: 3

 Use showdetails to show the contents of the message

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_75695 with NodeURI http://AH-SRADFORD:61537/
Shutting down ROS master on http://AH-SRADFORD:11311/.

Input Arguments
serviceclient — Service client
ServiceClient object handle

Service client, specified as a ServiceClient object handle.

requestmsg — Request message
Message object handle

Request message, specified as a Message object handle. The default message type is
serviceclient.ServiceType.

2 Functions — Alphabetical List

2-16

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'TimeOut',5

TimeOut — Timeout for service response in seconds
inf (default) | scalar

Timeout for service response in seconds, specified as a comma-separated pair consisting
of 'Timeout' and a scalar. If the service client does not receive a service response and
the timeout period elapses, call displays an error message and lets MATLAB continue
running the current program. The default value of inf blocks MATLAB from running
the current program until the service client receives a service response.

Output Arguments
response — Response message
Message object handle

llResponse message sent by the service server, returned as a Message object handle.

See Also
rossvcclient

Introduced in R2015a

 call

2-17

cancelAllGoals
Cancel all goals on action server

Syntax
cancelAllGoals(client)

Description
cancelAllGoals(client) sends a request from the specified client to the ROS action
server to cancel all currently pending or active goals, including goals from other clients.

Examples

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

2 Functions — Alphabetical List

2-18

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

 cancelAllGoals

2-19

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action
client enables you to track a single goal at a time.

See Also
cancelGoal | rosaction | sendGoal | sendGoalAndWait

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

Introduced in R2016b

2 Functions — Alphabetical List

2-20

cancelGoal
Cancel last goal sent by client

Syntax
cancelGoal(client)

Description
cancelGoal(client) sends a cancel request for the tracked goal, which is the last one
sent to the action server. The specified client sends the request.

If the goal is in the 'active' state, the server preempts the execution of the goal. If the
goal is 'pending', it is recalled. If this client has not sent a goal, or if the previous goal
was achieved, this function returns immediately.

Examples

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

 cancelGoal

2-21

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

2 Functions — Alphabetical List

2-22

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action
client enables you to track a single goal at a time.

See Also
cancelAllGoals | rosaction | sendGoal | sendGoalAndWait

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

Introduced in R2016b

 cancelGoal

2-23

canTransform
Verify if transformation is available

Syntax
isAvailable = canTransform(tftree,targetframe,sourceframe)
isAvailable = canTransform(tftree,targetframe,sourceframe,
sourcetime)

Description
isAvailable = canTransform(tftree,targetframe,sourceframe) verifies if a
transformation between the source frame and target frame is available at the current
time.

isAvailable = canTransform(tftree,targetframe,sourceframe,
sourcetime) verifies if a transformation is available for the source time. If sourcetime
is outside the buffer window, the function returns false.

Examples

Send A Transformation to the ROS Network

This example shows how to create a transformation and send it over the ROS network.

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '172.28.194.91';
rosinit(ipaddress)
tftree = rostf;
pause(2);

Initializing global node /matlab_global_node_61809 with NodeURI http://172.28.194.90:55314/

2 Functions — Alphabetical List

2-24

Verify the transformation you want does not exist. canTransform returns false if the
transformation is not immediately available.

canTransform(tftree,'new_frame','base_link')

ans =

 0

Create a TransformStamped message. Populate with the transformation information.

tform = rosmessage('geometry_msgs/TransformStamped')
tform.ChildFrameId = 'new_frame';
tform.Header.FrameId = 'base_link';
tform.Transform.Translation.X = 0.5;
tform.Transform.Rotation.Z = 0.75;

tform =

 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1×1 Header]
 ChildFrameId: ''
 Transform: [1×1 Transform]

 Use showdetails to show the contents of the message

Send the transformation over the ROS network.

sendTransform(tftree,tform)

Check if the transformation is now on the ROS network

canTransform(tftree,'new_frame','base_link')

ans =

 1

 canTransform

2-25

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_61809 with NodeURI http://172.28.194.90:55314/

Get ROS Transformations and Apply to ROS Messages

This example shows how to setup a ROS transformation tree and transform frames based
on this information. It uses time-buffered transformations to access transformations at
different times.

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '172.28.194.91';
rosinit(ipaddress)
tftree = rostf;
pause(1);

Initializing global node /matlab_global_node_93523 with NodeURI http://172.28.194.90:64339/

Look at the available frames on the transformation tree.

tftree.AvailableFrames

ans =

 'base_footprint'
 'base_link'
 'camera_depth_frame'
 'camera_depth_optical_frame'
 'camera_link'
 'camera_rgb_frame'
 'camera_rgb_optical_frame'
 'caster_back_link'
 'caster_front_link'
 'cliff_sensor_front_link'
 'cliff_sensor_left_link'
 'cliff_sensor_right_link'
 'gyro_link'
 'odom'

2 Functions — Alphabetical List

2-26

 'plate_bottom_link'
 'plate_middle_link'
 'plate_top_link'
 'pole_bottom_0_link'
 'pole_bottom_1_link'
 'pole_bottom_2_link'
 'pole_bottom_3_link'
 'pole_bottom_4_link'
 'pole_bottom_5_link'
 'pole_kinect_0_link'
 'pole_kinect_1_link'
 'pole_middle_0_link'
 'pole_middle_1_link'
 'pole_middle_2_link'
 'pole_middle_3_link'
 'pole_top_0_link'
 'pole_top_1_link'
 'pole_top_2_link'
 'pole_top_3_link'
 'wheel_left_link'
 'wheel_right_link'

Check if the desired transformation is available now. This example is looking for the
transformation from 'camera_link' to 'base_link'.

canTransform(tftree,'base_link','camera_link')

ans =

 1

Get the transformation for 3 seconds from now. getTransform will wait until the
transformation becomes available with the specified timeout.

desiredTime = rostime('now')+3;
tform = getTransform(tftree,'base_link','camera_link',...
 desiredTime,'Timeout',5);

Create a ROS message to transform. Messages could be retrieved off the ROS network as
well.

 canTransform

2-27

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the ROS message to the 'base_link' frame using the desired time saved
from before.

tfpt = transform(tftree,'base_link',pt,desiredTime);

Optional: You can also use apply with the stored tform to apply this transformation to
the pt message.

tfpt2 = apply(tform,pt);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_93523 with NodeURI http://172.28.194.90:64339/

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
character vector

Target coordinate frame that entity transforms into, specified as a character vector. You
can view the available frames for transformation calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
character vector

Initial coordinate frame, specified as a character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

2 Functions — Alphabetical List

2-28

sourcetime — ROS or system time
scalar | Time object handle

ROS or system time, specified as a scalar or Time object handle. The scalar is converted
to a Time object using rostime.

Output Arguments
isAvailable — Indicator if transform exists
boolean

Indicator if transform exists, returned as a boolean. The function returns false are if:

• sourcetime is outside the buffer window.
• sourcetime is in the future.
• the transformation has not be published yet.

See Also
getTransform | transform

Introduced in R2016b

 canTransform

2-29

cart2hom
Convert Cartesian coordinates to homogeneous coordinates

Syntax
hom = cart2hom(cart)

Description
hom = cart2hom(cart) converts a set of points in Cartesian coordinates to
homogeneous coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];
h = cart2hom(c)

h =

 0.8147 0.1270 0.6324 1.0000
 0.9058 0.9134 0.0975 1.0000

Input Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, specified as an n-by-(k–1) matrix, containing n points. Each row of
cart represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.

2 Functions — Alphabetical List

2-30

Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Output Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. k must be
greater than or equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hom2cart

Introduced in R2015a

 cart2hom

2-31

definition
Retrieve definition of ROS message type

Syntax
def = definition(msg)

Description
def = definition(msg) returns the ROS definition of the message type associated
with the message object, msg. The details of the message definition include the structure,
property data types, and comments from the authors of that specific message.

Examples

Access ROS Message Definition for Message

Create a Point Message.

point = rosmessage('geometry_msgs/Point');

Access the definition.

def = definition(point)

def =

 '% This contains the position of a point in free space
 double X
 double Y
 double Z

2 Functions — Alphabetical List

2-32

 '

Input Arguments
msg — ROS message
Message object handle

ROS message, specified as a Message object handle. This message can be created using
the rosmessage function.

Output Arguments
def — Details of message definition
character vector

Details of the information inside the ROS message definition, returned as a character
vector.

See Also
rosmessage | rosmsg

Introduced in R2015a

 definition

2-33

del
Delete a ROS parameter

Syntax
del(ptree,paramname)
del(ptree,namespace)

Description
del(ptree,paramname) deletes a parameter with name paramname from the
parameter tree, ptree. The parameter is also deleted from the ROS parameter server. If
the specified paramname does not exist, the function displays an error.

del(ptree,namespace) deletes from the parameter tree all parameter values under
the specified namespace.

Examples

Delete Parameter on ROS Master

Connect to the ROS network. Create a parameter tree and a 'MyParam' parameter.
Check that the parameter exists.

rosinit
ptree = rosparam;
set(ptree,'MyParam','test')
has(ptree,'MyParam')

Initializing ROS master on http://bat5823win64:54494/.
Initializing global node /matlab_global_node_57635 with NodeURI http://bat5823win64:54498/

ans =

2 Functions — Alphabetical List

2-34

 logical

 1

Delete the parameter. Verify it was deleted. Shut down the ROS network.

del(ptree,'MyParam')
has(ptree,'MyParam')
rosshutdown

ans =

 logical

 0

Shutting down global node /matlab_global_node_57635 with NodeURI http://bat5823win64:54498/
Shutting down ROS master on http://bat5823win64:54494/.

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
character vector

ROS parameter name, specified as a character vector. This character vector must match
the parameter name exactly.

namespace — ROS parameter namespace
character vector

ROS parameter namespace, specified as a character vector. All parameter names
starting with this character vector are listed when calling
rosparam('list',namespace).

 del

2-35

See Also
has | rosparam | set

Introduced in R2015a

2 Functions — Alphabetical List

2-36

deleteFile
Delete file from device

Syntax
deleteFile(device,filename)

Description
deleteFile(device,filename) deletes the specified file from the ROS device.

Examples

Put, Get, and Delete Files on ROS Device

Put a file from your host computer onto a ROS device, get it back, and then delete it.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.154.131','user','password');

Put a new text file that is in the MATLAB® current folder onto the ROS device. The
destination folder must exist.

putFile(d,'test_file.txt','/home/user/test_folder')

Get a text file from the ROS device. You can get any file, not just ones added from
MATLAB®. By default, the file is added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/test_file.txt')

Delete the text file on the ROS device.

 deleteFile

2-37

deleteFile(d,'/home/user/test_folder/test_file.txt')

Put, Get, and Delete Files on ROS Device Using Wildcards

Put a file from your host computer onto a ROS device, get it back, and then delete it. Use
wildcards to search for all matching files.

Note: You must have a valid ROS device to connect to at the IP address specified in the
example.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.203.129','user','password');

Put all text files at the specified path onto the ROS device. The destination folder must
exist.

putFile(d,'C:/MATLAB/*.txt','/home/user/test_folder')

Get all text files from the ROS device. You can get any files, not just ones added from
MATLAB®. By default, the files are added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/*.txt')

Delete all text files on the ROS device at the specified folder.

deleteFile(d,'/home/user/test_folder/*.txt')

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

filename — File to delete
character vector

File to delete, specified as a character vector. When you specify the file name, you can
use path information and wildcards.

2 Functions — Alphabetical List

2-38

Example: '/home/user/image.jpg'
Example: '/home/user/*.jpg'
Data Types: cell

See Also
dir | getFile | openShell | putFile | rosdevice | system

Introduced in R2016b

 deleteFile

2-39

dir
List folder contents on device

Syntax
dir(device,folder)
clist = dir(device,folder)

Description
dir(device,folder) lists the files in a folder on the ROS device. Wildcards are
supported.

clist = dir(device,folder) stores the list of files as a structure

Examples

View Folder Contents on ROS Device

Connect to a ROS device and list the contents of a folder.

Connect to a ROS device. Specify the device address, username, and password of your
ROS device.

d = rosdevice('192.168.154.131','user','password');

Get the folder list of a Catkin workspace on your ROS device. View the folder as a table.

flist = dir(d,'/home/user/catkin_ws_test/');
ftable = struct2table(flist)

ftable =

 name folder isdir bytes

2 Functions — Alphabetical List

2-40

 ___________________________ ___________________________ _____ _____

 '.' '/home/user/catkin_ws_test' true 0
 '..' '/home/user/catkin_ws_test' true 0
 '.catkin_workspace' '/home/user/catkin_ws_test' false 98
 'build' '/home/user/catkin_ws_test' true 0
 'devel' '/home/user/catkin_ws_test' true 0
 'robotcontroller2_node.log' '/home/user/catkin_ws_test' false 75
 'robotcontroller_node.log' '/home/user/catkin_ws_test' false 75
 'src' '/home/user/catkin_ws_test' true 0

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

folder — Folder name
character vector

Name of the folder to list the contents of, specified as a character vector.

Output Arguments
clist — Contents list
structure

Contents list, returned as a structure. The structure contains these fields:

• name — File name (char)
• folder — Absolute path (char)
• bytes — Size of the file in bytes (double)
• isdir — Indicator of whether name is a folder (logical)

 dir

2-41

See Also
deleteFile | getFile | openShell | putFile | rosdevice | system

Introduced in R2016b

2 Functions — Alphabetical List

2-42

eul2quat
Convert Euler angles to quaternion

Syntax
quat = eul2quat(eul)
quat = eul2quat(eul,sequence)

Description
quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding
quaternion, quat. The default order for Euler angle rotations is 'ZYX'.

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion.
The Euler angles are specified in the axis rotation sequence, sequence. The default
order for Euler angle rotations is 'ZYX'.

Examples

Convert Euler Angles to Quaternion

eul = [0 pi/2 0];
qZYX = eul2quat(eul)

qZYX =

 0.7071 0 0.7071 0

 eul2quat

2-43

Convert Euler Angles to Quaternion Using Default ZYZ Axis Order

eul = [pi/2 0 0];
qZYZ = eul2quat(eul,'ZYZ')

qZYZ =

 0.7071 0 0 0.7071

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ' | 'XYZ'

Axis rotation sequence for the Euler angles, specified as one of these character vectors:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.
• 'XYZ' – The order of rotation angles is x-axis, y-axis, z-axis.

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

2 Functions — Alphabetical List

2-44

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2eul

Introduced in R2015a

 eul2quat

2-45

eul2rotm
Convert Euler angles to rotation matrix

Syntax
rotm = eul2rotm(eul)
rotm = eul2rotm(eul,sequence)

Description
rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding
rotation matrix, rotm. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying). The default order for Euler
angle rotations is 'ZYX'.

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm.
The Euler angles are specified in the axis rotation sequence, sequence. The default
order for Euler angle rotations is 'ZYX'.

Examples

Convert Euler Angles to Rotation Matrix

eul = [0 pi/2 0];
rotmZYX = eul2rotm(eul)

rotmZYX =

 0.0000 0 1.0000
 0 1.0000 0
 -1.0000 0 0.0000

2 Functions — Alphabetical List

2-46

Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
rotmZYZ = eul2rotm(eul,'ZYZ')

rotmZYZ =

 0.0000 -0.0000 1.0000
 1.0000 0.0000 0
 -0.0000 1.0000 0.0000

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ' | 'XYZ'

Axis rotation sequence for the Euler angles, specified as one of these character vectors:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.
• 'XYZ' – The order of rotation angles is x-axis, y-axis, z-axis.

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

 eul2rotm

2-47

Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2eul

Introduced in R2015a

2 Functions — Alphabetical List

2-48

eul2tform
Convert Euler angles to homogeneous transformation

Syntax
eul = eul2tform(eul)
tform = eul2tform(eul,sequence)

Description
eul = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying). The default order
for Euler angle rotations is 'ZYX'.

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous
transformation. The Euler angles are specified in the axis rotation sequence, sequence.
The default order for Euler angle rotations is 'ZYX'.

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];
tformZYX = eul2tform(eul)

tformZYX =

 0.0000 0 1.0000 0
 0 1.0000 0 0
 -1.0000 0 0.0000 0

 eul2tform

2-49

 0 0 0 1.0000

Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
tformZYZ = eul2tform(eul,'ZYZ')

tformZYZ =

 0.0000 -0.0000 1.0000 0
 1.0000 0.0000 0 0
 -0.0000 1.0000 0.0000 0
 0 0 0 1.0000

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ' | 'XYZ'

Axis rotation sequence for the Euler angles, specified as one of these character vectors:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.
• 'XYZ' – The order of rotation angles is x-axis, y-axis, z-axis.

2 Functions — Alphabetical List

2-50

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2eul

Introduced in R2015a

 eul2tform

2-51

get
Get ROS parameter value

Syntax
pvalue = get(ptree)
pvalue = get(ptree,paramname)
pvalue = get(ptree,namespace)

Description
pvalue = get(ptree) returns a dictionary of parameter values under the root
namespace: /. The dictionary is stored in a structure.

pvalue = get(ptree,paramname) gets the value of the parameter with the name
paramname from the parameter tree object ptree.

pvalue = get(ptree,namespace) returns a dictionary of parameter values under the
specified namespace.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• boolean — logical
• double — double
• string — character vector (char)
• list — cell array (cell)
• dictionary — structure (struct)

Examples

2 Functions — Alphabetical List

2-52

Set and Get Parameter Value

Create the parameter tree. A ROS network must be available using rosinit.

rosinit
ptree = rosparam;

Initializing ROS master on http://bat5823win64:54816/.
Initializing global node /matlab_global_node_40051 with NodeURI http://bat5823win64:54820/

Set a parameter value. You can also use the simplified version without a parameter tree:

rosparam set 'DoubleParam' 1.0
set(ptree,'DoubleParam',1.0)

Get the parameter value.

get(ptree,'DoubleParam')

ans =

 1

Alternatively, use the simplified versions without using the parameter tree.

rosparam set 'DoubleParam' 2.0
rosparam get 'DoubleParam'

2

Disconnect from ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40051 with NodeURI http://bat5823win64:54820/
Shutting down ROS master on http://bat5823win64:54816/.

Input Arguments
ptree — Parameter tree
ParameterTree object handle

 get

2-53

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
character vector

ROS parameter name, specified as a character vector. This character vector must match
the parameter name exactly.

namespace — ROS parameter namespace
character vector

ROS parameter namespace, specified as a character vector. All parameter names
starting with this character vector are listed when calling
rosparam('list',namespace).

Output Arguments
pvalue — ROS parameter value or dictionary of values
int32 | logical | double | character vector | cell array | structure

ROS parameter value, returned as a supported MATLAB data type. When specifying the
namespace input argument, pvalue is returned as a dictionary of parameter values
under the specified namespace. The dictionary is represented in MATLAB as a structure.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• boolean — logical
• double — double
• string — character vector (char)
• list — cell array (cell)
• dictionary — structure (struct)

2 Functions — Alphabetical List

2-54

Limitations
Base64-encoded binary data and iso8601 data from ROS are not supported.

See Also
rosparam | set

Introduced in R2015a

 get

2-55

getParticlesrobotics.MonteCarloLocalization.getPart
icles
Package: robotics

Get particles from localization algorithm

Syntax
[particles,weights] = getParticles(mcl)

Description
[particles,weights] = getParticles(mcl) returns the current particles used by
the MonteCarloLocalization object. particles is an n-by-3 matrix that contains the
location and orientation of each particle. Each row has a corresponding weight value
specified in weights. The number of rows can change with each iteration of the MCL
algorithm. Use this method to extract the particles and analyze them separately from the
algorithm.

Examples

Get Particles from Monte Carlo Localization Algorithm

Get particles from the particle filter used in the Monte Carlo Localization object.

Create a map and a Monte Carlo localization object.

map = robotics.BinaryOccupancyGrid(10,10,20);
mcl = robotics.MonteCarloLocalization(map);

Create robot data for the range sensor and pose.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;

2 Functions — Alphabetical List

2-56

angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Initialize particles using step.

[isUpdated,estimatedPose,covariance] = step(mcl,odometryPose,ranges,angles);

Get particles from the updated object.

[particles,weights] = getParticles(mcl);

Input Arguments
mcl — MonteCarloLocalization object
handle

robotics.MonteCarloLocalization object, specified as an object handle.

Output Arguments
particles — Estimation particles
n-by-3 vector

Estimation particles, returned as an n-by-3 vector, [x y theta]. Each row corresponds
to the position and orientation of a single particle. The length can change with each
iteration of the algorithm.

weights — Weights of particles
n-by-1 vector

Weights of particles, returned as a n-by-1 vector. Each row corresponds to the weight of
the particle in the matching row of particles. These weights are used in the final
estimate of the pose of the robot. The length can change with each iteration of the
algorithm.

See Also
robotics.MonteCarloLocalization | robotics.MonteCarloLocalization.step

 getParticlesrobotics.MonteCarloLocalization.getParticles

2-57

Topics
“Monte Carlo Localization Algorithm”

Introduced in R2016a

2 Functions — Alphabetical List

2-58

getFile
Get file from device

Syntax
getFile(device,remoteSource)
getFile(device,remoteSource,localDestination)

Description
getFile(device,remoteSource) copies the specified file from the ROS device to the
MATLAB current folder. Wildcards are supported.

getFile(device,remoteSource,localDestination) copies the remote file to a
destination path. Specify a file name at the end of the destination path to copy with a
custom file name.

Examples

Put, Get, and Delete Files on ROS Device

Put a file from your host computer onto a ROS device, get it back, and then delete it.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.
d = rosdevice('192.168.154.131','user','password');

Put a new text file that is in the MATLAB® current folder onto the ROS device. The
destination folder must exist.
putFile(d,'test_file.txt','/home/user/test_folder')

Get a text file from the ROS device. You can get any file, not just ones added from
MATLAB®. By default, the file is added to the MATLAB current folder.

 getFile

2-59

getFile(d,'/home/user/test_folder/test_file.txt')

Delete the text file on the ROS device.

deleteFile(d,'/home/user/test_folder/test_file.txt')

Put, Get, and Delete Files on ROS Device Using Wildcards

Put a file from your host computer onto a ROS device, get it back, and then delete it. Use
wildcards to search for all matching files.

Note: You must have a valid ROS device to connect to at the IP address specified in the
example.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.203.129','user','password');

Put all text files at the specified path onto the ROS device. The destination folder must
exist.

putFile(d,'C:/MATLAB/*.txt','/home/user/test_folder')

Get all text files from the ROS device. You can get any files, not just ones added from
MATLAB®. By default, the files are added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/*.txt')

Delete all text files on the ROS device at the specified folder.

deleteFile(d,'/home/user/test_folder/*.txt')

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

2 Functions — Alphabetical List

2-60

remoteSource — Path and name of file on ROS device
source path

Path and name of the file on the ROS device. Specify the path as a character vector. You
can use an absolute path or a relative path from the MATLAB Current Folder. Use the
path and file naming conventions of the operating system on your host computer.
Example: '/home/user/test_folder/test_file.txt'
Data Types: char

localDestination — Destination folder path and optional file name
character vector

Destination folder path and optional file name, specified as a character vector. Specify a
file name at the end of the destination path to copy with a custom file name. Use the host
computer path and file naming conventions.
Example: 'C:/User/username/test_folder'
Data Types: char

See Also
deleteFile | dir | openShell | putFile | rosdevice | system

Introduced in R2016b

 getFile

2-61

getTransform
Retrieve the transformation between two coordinate frames

Note The behavior of getTransform will change in a future release. The function will no
longer return an empty transform when the transform is unavailable and no
sourcetime is specified. If getTransform waits for the specified timeout period and the
transform is still not available, the function returns an error. The timeout period is 0 by
default.

Syntax
tf = getTransform(tftree,targetframe,sourceframe)
tf = getTransform(tftree,targetframe,sourceframe,sourcetime)
tf = getTransform(___ ,'Timeout',timeout)

Description
tf = getTransform(tftree,targetframe,sourceframe) returns the latest known
transformation between two coordinate frames. Transformations are structured as a 3-D
translation (3-element vector) and a 3-D rotation (quaternion).

tf = getTransform(tftree,targetframe,sourceframe,sourcetime) returns
the transformation at the given source time. An error is displayed if the transformation
at that time is not available.

tf = getTransform(___ ,'Timeout',timeout) specifies a timeout period, in
seconds to wait for the transformation to be available. Otherwise, it returns an error. Use
any of the previous syntaxes.

Examples

2 Functions — Alphabetical List

2-62

Get ROS Transformations and Apply to ROS Messages

This example shows how to setup a ROS transformation tree and transform frames based
on this information. It uses time-buffered transformations to access transformations at
different times.

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '172.28.194.91';
rosinit(ipaddress)
tftree = rostf;
pause(1);

Initializing global node /matlab_global_node_93523 with NodeURI http://172.28.194.90:64339/

Look at the available frames on the transformation tree.

tftree.AvailableFrames

ans =

 'base_footprint'
 'base_link'
 'camera_depth_frame'
 'camera_depth_optical_frame'
 'camera_link'
 'camera_rgb_frame'
 'camera_rgb_optical_frame'
 'caster_back_link'
 'caster_front_link'
 'cliff_sensor_front_link'
 'cliff_sensor_left_link'
 'cliff_sensor_right_link'
 'gyro_link'
 'odom'
 'plate_bottom_link'
 'plate_middle_link'
 'plate_top_link'
 'pole_bottom_0_link'
 'pole_bottom_1_link'
 'pole_bottom_2_link'
 'pole_bottom_3_link'
 'pole_bottom_4_link'

 getTransform

2-63

 'pole_bottom_5_link'
 'pole_kinect_0_link'
 'pole_kinect_1_link'
 'pole_middle_0_link'
 'pole_middle_1_link'
 'pole_middle_2_link'
 'pole_middle_3_link'
 'pole_top_0_link'
 'pole_top_1_link'
 'pole_top_2_link'
 'pole_top_3_link'
 'wheel_left_link'
 'wheel_right_link'

Check if the desired transformation is available now. This example is looking for the
transformation from 'camera_link' to 'base_link'.

canTransform(tftree,'base_link','camera_link')

ans =

 1

Get the transformation for 3 seconds from now. getTransform will wait until the
transformation becomes available with the specified timeout.

desiredTime = rostime('now')+3;
tform = getTransform(tftree,'base_link','camera_link',...
 desiredTime,'Timeout',5);

Create a ROS message to transform. Messages could be retrieved off the ROS network as
well.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the ROS message to the 'base_link' frame using the desired time saved
from before.

2 Functions — Alphabetical List

2-64

tfpt = transform(tftree,'base_link',pt,desiredTime);

Optional: You can also use apply with the stored tform to apply this transformation to
the pt message.

tfpt2 = apply(tform,pt);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_93523 with NodeURI http://172.28.194.90:64339/

Get Buffered Transformations from ROS Network

This example shows how to access time-buffered transformations on the ROS network.
Access transformations for specific times and modify the BufferTime property based on
your desired times.

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '192.168.154.131';
rosinit(ipaddress)
tftree = rostf;
pause(2);

Initializing global node /matlab_global_node_83561 with NodeURI http://192.168.154.1:64505/

Get the transformation from 1 seconds ago.

desiredTime = rostime('now')-1;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

The transformation buffer time is 10 seconds by default. Modify the BufferTime
property of the transformation tree to increase the buffer time and wait for that buffer to
fill.

tftree.BufferTime = 15;
pause(15);

Get the transformation from 12 seconds ago.

 getTransform

2-65

desiredTime = rostime('now')-12;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

You can also get transformations at a time in the future. getTransform will wait until
the transformation is available. You can also specify a timeout to error out if no
transformation is found. This example waits 5 seconds for the transformation at 3
seconds from now to be available.

desiredTime = rostime('now')+3;
tform = getTransform(tftree,'base_link','camera_link',desiredTime,'Timeout',5);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_83561 with NodeURI http://192.168.154.1:64505/

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
character vector

Target coordinate frame, specified as a character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
character vector

Initial coordinate frame, specified as a character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

sourcetime — ROS or system time
Time object handle

2 Functions — Alphabetical List

2-66

ROS or system time, specified as a Time object handle. By default, time is the ROS
simulation time published on the clock topic. If the use_sim_time ROS parameter is
set to true, time returns the system time. You can create a Time object using rostime.

timeout — Timeout for receiving transform
0 (default) | scalar in seconds

Timeout for receiving transform, specified as a scalar in seconds. The function returns an
error if the timeout is reached and no transform becomes available.

Output Arguments
tf — Transformation between coordinate frames
TransformStamped object handle

Transformation between coordinate frames, returned as a TransformStamped object
handle. Transformations are structured as a 3-D translation (3-element vector) and a 3-D
rotation (quaternion).

See Also
transform | waitForTransform

Introduced in R2015a

 getTransform

2-67

has
Check if ROS parameter name exists

Syntax
exists = has(ptree,paramname)

Description
exists = has(ptree,paramname) checks if the parameter with name paramname
exists in the parameter tree, ptree.

Examples

Check If ROS Parameter Exists

Connect to a ROS network. Create a parameter tree and check for the 'MyParam'
parameter.

rosinit
ptree = rosparam;
has(ptree,'MyParam')

Initializing ROS master on http://bat5823win64:55040/.
Initializing global node /matlab_global_node_62265 with NodeURI http://bat5823win64:55044/

ans =

 logical

 0

Set the 'MyParam' parameter and verify it exists. Disconnect from ROS network.

2 Functions — Alphabetical List

2-68

set(ptree,'MyParam','test')
has(ptree,'MyParam')
rosshutdown

ans =

 logical

 1

Shutting down global node /matlab_global_node_62265 with NodeURI http://bat5823win64:55044/
Shutting down ROS master on http://bat5823win64:55040/.

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
character vector

ROS parameter name, specified as a character vector. This character vector must match
the parameter name exactly.

Output Arguments
exists — Flag indicating whether the parameter exists
true | false

Flag indicating whether the parameter exists, returned as true or false.

See Also
get | rosparam | search | set

 has

2-69

Introduced in R2015a

2 Functions — Alphabetical List

2-70

hom2cart
Convert homogeneous coordinates to Cartesian coordinates

Syntax
cart = hom2cart(hom)

Description
cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points

h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];
c = hom2cart(h)

c =

 0.5570 1.9150 0.3152
 1.0938 1.9298 1.9412

Input Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, specified as an n-by-k matrix, containing n points. k must be
greater than or equal to 2.

 hom2cart

2-71

Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Output Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, returned as an n-by-(k–1) matrix, containing n points. Each row of
cart represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cart2hom

Introduced in R2015a

2 Functions — Alphabetical List

2-72

inforobotics.PurePursuit.info
Package: robotics

Characteristic information about PurePursuit object

Syntax
controllerInfo = info(controller)

Description
controllerInfo = info(controller) returns a structure, controllerInfo, with
additional information about the status of the PurePursuit object, controller. The
structure contains the fields, RobotPose and LookaheadPoint.

Examples

Get Additional PurePursuit Object Information

Use the info method to get more information about a PurePursuit object. info
returns two fields, RobotPose and LookaheadPoint, which correspond to the current
position and orientation of the robot and the point on the path used to compute outputs
from the last call of the object.

Create a PurePursuit object.

pp = robotics.PurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given
as the input.

 inforobotics.PurePursuit.info

2-73

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

s =

 struct with fields:

 RobotPose: [0 0 0]
 LookaheadPoint: [0.7071 0.7071]

Input Arguments
controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

Output Arguments
controllerInfo — Information on the PurePursuit object
structure

Information on the PurePursuit object, returned as a structure. The structure contains
two fields:

• RobotPose – A three-element vector in the form [x y theta] that corresponds to
the x-y position and orientation of the robot. The angle, theta, is measured in radians
with positive angles measured counterclockwise from the x-axis.

• LookaheadPoint– A two-element vector in the form [x y]. The location is a point
on the path that was used to compute outputs of the last call to
robotics.PurePursuit.step.

2 Functions — Alphabetical List

2-74

See Also
robotics.PurePursuit | robotics.PurePursuit.step

Topics
“Pure Pursuit Controller”

Introduced in R2015a

 inforobotics.PurePursuit.info

2-75

importrobot
Import rigid body tree model from URDF file or text

Syntax
robot = importrobot(filename)
robot = importrobot(URDFtext)
robot = importrobot(filename,format)
robot = importrobot(___ ,Name,Value)

Description
robot = importrobot(filename) returns a robotics.RigidBodyTree object by
parsing the Unified Robot Description Format (URDF) file specified by filename.

robot = importrobot(URDFtext) parses the URDF text. Specify URDFtext as a
character vector.

robot = importrobot(filename,format) specifies the type of robot description file
for validation. The only supported format is 'urdf'.

robot = importrobot(___ ,Name,Value) provides additional options specified by
Name,Value pair arguments.

Examples

Import Robot from URDF File

Import the URDF file as a robotics.RigidBodyTree object.

robot = importrobot('iiwa14.urdf')

robot =

2 Functions — Alphabetical List

2-76

 RigidBodyTree with properties:

 NumBodies: 10
 Bodies: {1x10 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {1x10 cell}
 BaseName: 'world'
 Gravity: [0 0 0]
 DataFormat: 'struct'

Import Robot from URDF Character Vector

Specify the URDF character vector. This character vector is a minimalist description for
creating a valid robot model.

URDFtext = '<?xml version="1.0" ?><robot name="min"><link name="L0"/></robot>';

Import the robot model. THe description creates a RigidBodyTree object that has only a
robot base link named 'L0'.

robot = importrobot(URDFtext)

robot =

 RigidBodyTree with properties:

 NumBodies: 0
 Bodies: {1x0 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {1x0 cell}
 BaseName: 'L0'
 Gravity: [0 0 0]
 DataFormat: 'struct'

Display a Robot Model with Visual Geometries

You can import robots that have .stl files associated with the Unified Robot Description
format (URDF) file to describe the visual geometries of the robot. Each rigid body has an

 importrobot

2-77

individual visual geometry specified. The importrobot function parses to URDF file to
get the robot model and visual geometries. Use the show function to visualize the robot
model in a figure. You can then interact with the model by clicking components to inspect
them and right-clicking to toggle visibility.

Import a robot model as a URDF file. The .stl file locations must be properly specified in
this URDF. To add other .stl files to individual rigid bodies, see
robotics.RigidBody.addVisual.

robot = importrobot('iiwa14.urdf');

Visualize the robot with the associated visual model. Click bodies or frames to inspect
them. Right-click bodies to toggle visibility for each visual geometry.

show(robot)

ans =

 Axes (Primary) with properties:

 XLim: [-1.5000 1.5000]
 YLim: [-1.5000 1.5000]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Use GET to show all properties

2 Functions — Alphabetical List

2-78

Input Arguments
filename — Name of URDF file
character vector

Name of URDF file, specified as a character vector. This file must be a valid URDF robot
description.
Example: 'robot_file.urdf'

URDFtext — URDF text
character vector

 importrobot

2-79

URDF robot text, specified as a character vector.
Example: <?xml version="1.0" ?><robot name="min"><link name="L0"/></
robot>

format — File format of robot description
'urdf' | character vector

File format of robot description, specified as a character vector. The only supported file
format is 'urdf'. Use this input to validate the file type.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MeshPath',{'../arm_meshes','../body_meshes'}

MeshPath — Relative search paths for mesh files
character vector | cell array of character vectors

Relative search paths for mesh files, specified as a character vector or cell array of
character vectors. Mesh files must still be specified inside the URDF file, but MeshPath
defines the relative paths for these specified files. When using this function, the URDF
importer searches for the mesh files specified in the URDF using all the specified relative
paths.

Output Arguments
robot — Robot model
RigidBodyTree object

Robot model, returned as a robotics.RigidBodyTree object.

2 Functions — Alphabetical List

2-80

Tips
When importing a robot model with visual meshes, the importrobot function searches
for the .stl files to assign to each rigid body using these rules:

• The function searches the raw mesh path for a specified rigid body from the URDF
file. References to ROS packages have the package:\\<pkg_name> removed.

• Absolute paths are checked directly with no modification.
• Relative paths are checked using the following directories in order:

• User-specified MeshPath
• Current directory
• MATLAB path
• The folder containing the URDF file
• One level above the folder containing the URDF file

If the mesh file is still not found, the parser ignores the mesh file and returns a
robotics.RigidBodyTree object without visual.

See Also
robotics.RigidBodyTree

Topics
“Rigid Body Tree Robot Model”

Introduced in R2017a

 importrobot

2-81

isCoreRunning
Determine if ROS core is running

Syntax
running = isCoreRunning(device)

Description
running = isCoreRunning(device) determines if the ROS core is running on the
connected device.

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run
ROS nodes to communicate via a ROS network. You can run and stop a ROS core or node
and check their status using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'
 Username: 'user'

2 Functions — Alphabetical List

2-82

 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core and check if it is running.

runCore(d)
running = isCoreRunning(d)

running =

 logical

 1

Stop the ROS core and confirm that it is no longer running.

stopCore(d)
running = isCoreRunning(d)

running =

 logical

 0

• “Generate a Standalone ROS Node from Simulink®”

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

 isCoreRunning

2-83

Output Arguments
running — Status of whether ROS core is running
true | false

Status of whether ROS core is running, returned as true or false.

See Also
rosdevice | runCore | stopCore

Topics
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

2 Functions — Alphabetical List

2-84

isNodeRunning
Determine if ROS node is running

Syntax
running = isNodeRunning(device,modelName)

Description
running = isNodeRunning(device,modelName) determines if the ROS node
associated with the specified Simulink model is running on the specified rosdevice,
device.

Examples

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. First, run a ROS core so that
ROS nodes can communicate via a ROS network. You can run and stop a ROS core or
node and check their status using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/hydro';
d.CatkinWorkspace = '~/catkin_ws_test'

d =

 rosdevice with properties:

 isNodeRunning

2-85

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.
Initializing global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Run a ROS node. specifying the node name. Check if the node is running.

runNode(d,'robotcontroller')
running = isNodeRunning(d,'robotcontroller')

running =

 logical

 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

2 Functions — Alphabetical List

2-86

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

stopNode(d,'robotcontroller')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

• “Generate a Standalone ROS Node from Simulink®”

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

modelName — Name of the deployed Simulink model
character vector

Name of the deployed Simulink model, specified as a character vector. If the model name
is not valid, the function returns false.

Output Arguments
running — Status of whether ROS node is running
true | false

Status of whether ROS node is running, returned as true or false.

See Also
rosdevice | runNode | stopNode

Topics
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

 isNodeRunning

2-87

matchScans
Estimate pose between two laser scans

Syntax
pose = matchScans(currScan,refScan)
pose = matchScans(currRanges,currAngles,refRanges,refAngles)
[pose,stats] = matchScans(___)
[___] = matchScans(___ ,Name,Value)

Description
pose = matchScans(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using the normal distributions transform
(NDT).

pose = matchScans(currRanges,currAngles,refRanges,refAngles) finds the
relative pose between two laser scans specified as ranges and angles.

[pose,stats] = matchScans(___) returns additional statistics about the scan
match result using the previous input arguments.

[___] = matchScans(___ ,Name,Value) specifies additional options specified by
one or more Name,Value pair arguments.

Examples
Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

2 Functions — Alphabetical List

2-88

Using the transformScan function, generate a second lidar scan at an x,y offset of
(0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between
them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan
into the frame of the first scan using the relative pose difference. Plot both the original
scans and the aligned scans.

currScan2 = transformScan(currScan,pose);

subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)
title('Original Scans')
hold off

subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

 matchScans

2-89

Match Laser Scans

This example uses the 'fminunc' solver algorithm to perform scan matching. This
solver algorithm requires an Optimization Toolbox™ license.

Specify a reference laser scan as ranges and angles.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);

Using the transformScan function, generate a second laser scan at an x,y offset of
(0.5,0.2).

2 Functions — Alphabetical List

2-90

[currRanges,currAngles] = transformScan(refRanges,refAngles,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between
them.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,'SolverAlgorithm','fminunc');

Improve the estimate by giving an initial pose estimate.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,...
 'SolverAlgorithm','fminunc','InitialPose',[-0.4 -0.1 0]);

Use the transformScan function to align the scans by transforming the second scan
into the frame of the first scan using the relative pose difference. Plot both the original
scans and the aligned scans.

[currRanges2,currAngles2] = transformScan(currRanges,currAngles,pose);

[x1 y1] = pol2cart(refAngles,refRanges);
[x2 y2] = pol2cart(currAngles,currRanges);
[x3 y3] = pol2cart(currAngles2,currRanges2);

subplot(1,2,1)
plot(x1,y1,'o',x2,y2,'*r')
title('Original Scans')
subplot(1,2,2)
plot(x1,y1,'o',x3,y3,'*r')
title('Aligned Scans')

 matchScans

2-91

• “Estimate Robot Pose with Scan Matching”
• “Compose a Series of Laser Scans with Pose Changes”

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

2 Functions — Alphabetical List

2-92

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

currRanges — Current laser scan ranges
vector in meters

Current laser scan ranges, specified as a vector. Ranges are given as distances to objects
measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

currAngles — Current laser scan angles
vector in radians

Current laser scan angles, specified as a vector in radians. Angles are given as the
orientations of the corresponding range measurements.

refRanges — Reference laser scan ranges
vector in meters

Reference laser scan ranges, specified as a vector in meters. Ranges are given as
distances to objects measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

refAngles — Reference laser scan angles
vector in radians

Reference laser scan angles, specified as a vector in radians. Angles are given as the
orientations of the corresponding range measurements.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 matchScans

2-93

Example: 'InitialPose',[1 1 pi/2]

SolverAlgorithm — Optimization algoerithm
'trust-region' (default) | 'fminunc'

Optimization algorithm, specified as either 'trust-region' or 'fminunc'. Using
'fminunc' requires an Optimization Toolbox™ license.

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the
comma-separated pair consisting of 'InitialPose' and an [x y theta] vector. [x
y] is the translation in meters and theta is the rotation in radians.

CellSize — Length of cell side
1 (default) | numeric scalar

Length of a cell side in meters, specified as the comma-separated pair consisting of
'CellSize' and a numeric scalar. matchScans uses the cell size to discretize the space
for the NDT algorithm.

Tuning the cell size is important for proper use of the NDT algorithm. The optimal cell
size depends on the input scans and the environment of your robot. Larger cell sizes can
lead to less accurate matching with poorly sampled areas. Smaller cell sizes require more
memory and less variation between subsequent scans. Sensor noise influences the
algorithm with smaller cell sizes as well. Choosing a proper cell size depends on the scale
of your environment and the input data.

MaxIterations — Maximum number of iterations
400 (default) | scalar integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a scalar integer. A larger number of iterations results in more
accurate pose estimates, but at the expense of longer execution time.

ScoreTolerance — Lower bounds on the change in NDT score
1e-6 (default) | numeric scalar

Lower bound on the change in NDT score, specified as the comma-separated pair
consisting of 'ScoreTolerance' and a numeric scalar. The NDT score is stored in the

2 Functions — Alphabetical List

2-94

Score field of the output stats structure. Between iterations, if the score changes by
less than this tolerance, the algorithm converges to a solution. A smaller tolerance
results in more accurate pose estimates, but requires a longer execution time.

Output Arguments
pose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x
y] is the translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following fields:

• Score — Numeric scalar representing the NDT score while performing scan
matching. This score is an estimate of the likelihood that the transformed current
scan matches the reference scan. Score is always nonnegative. Larger scores indicate
a better match.

• Hessian — 3-by-3 matrix representing the Hessian of the NDT cost function at the
given pose solution. The Hessian is used as an indicator of the uncertainty associated
with the pose estimate.

References

[1] Biber, P., and W. Strasser. "The Normal Distributions Transform: A New Approach to
Laser Scan Matching." Intelligent Robots and Systems Proceedings. 2003.

[2] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform -- an
Efficient Representation for Registration, Surface Analysis, and Loop Detection."
PhD Dissertation. Örebro University, School of Science and Technology, 2009.

 matchScans

2-95

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is supported for the default SolverAlgorithm, 'trust-region'. You
cannot use the 'fminunc' algorithm in code generation.

See Also
Functions
lidarScan | readCartesian | readScanAngles | transformScan

Classes
MonteCarloLocalization | OccupancyGrid

Topics
“Estimate Robot Pose with Scan Matching”
“Compose a Series of Laser Scans with Pose Changes”

Introduced in R2017a

2 Functions — Alphabetical List

2-96

openShell
Open interactive command shell to device

Syntax
openShell(device)

Description
openShell(device) opens an SSH terminal on your host computer that provides
encrypted access to the Linux® command shell on the ROS device. When prompted, enter
a user name and password.

Examples

Open Command Shell on ROS Device

Connect to a ROS device and open the command shell on your host computer.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.154.131','user','password');

Open the command shell.

openShell(d);

 openShell

2-97

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

See Also
deleteFile | dir | getFile | putFile | rosdevice | system

Introduced in R2016b

2 Functions — Alphabetical List

2-98

plot
Display laser or lidar scan readings

Syntax
plot(scanMsg)
plot(scanObj)
plot(___ ,Name,Value)
linehandle = plot(___)

Description
plot(scanMsg) plots the laser scan readings specified in the input LaserScan object
message. Axes are automatically scaled to the maximum range that the laser scanner
supports.

plot(scanObj) plots the lidar scan readings specified in scanObj.

plot(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. You can use either a laser scan

linehandle = plot(___) returns a column vector of line series handles, using any of
the arguments from previous syntaxes. Use linehandle to modify properties of the line
series after it is created.

When plotting ROS laser scan messages, MATLAB follows the standard ROS convention
for axis orientation. This convention states that positive x is forward, positive y is
left, and positive z is up. For more information, see Axis Orientation on the ROS Wiki.

Examples

 plot

2-99

http://www.ros.org/reps/rep-0103.html#axis-orientation

Plot Laser Scan Message

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.
rosinit('192.168.154.131')
sub = rossubscriber('/scan');
scan = receive(sub);

Initializing global node /matlab_global_node_06485 with NodeURI http://192.168.154.1:60432/

Plot the laser scan.
plot(scan)

Shutdown ROS network.

2 Functions — Alphabetical List

2-100

rosshutdown

Shutting down global node /matlab_global_node_06485 with NodeURI http://192.168.154.1:60432/

Plot Laser Scan Message With Maximum Range

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

rosinit('192.168.154.131')
sub = rossubscriber('/scan');
scan = receive(sub);

Initializing global node /matlab_global_node_29862 with NodeURI http://192.168.154.1:60595/

Plot the laser scan specifying the maximum range.

plot(scan,'MaximumRange',6)

 plot

2-101

Shutdown ROS network.
rosshutdown

Shutting down global node /matlab_global_node_29862 with NodeURI http://192.168.154.1:60595/

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside
of the sensors range.
x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);

2 Functions — Alphabetical List

2-102

ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on

 plot

2-103

plot(scan2)
legend('All Points','Valid Points')

Input Arguments
scanMsg — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

scanObj — Lidar scan readings
lidarScan object

2 Functions — Alphabetical List

2-104

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaximumRange',5

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of 'Parent' and an
axes object in which the laser scan is drawn. By default, the laser scan is plotted in the
currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-sepearated pair consisting of
'MaximumRange' and a scalar. This is only supported when you specify a When you
specify this name-value pair argument, the minimum and maximum x-axis limits and
the maximum y-axis limit are set based on specified value. The minimum y-axis limit is
automatically determined by the opening angle of the laser scanner.

This name-value pair only works when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique
identifiers, which you can use to query and modify properties of a specific chart line.

 plot

2-105

See Also
readCartesian

Introduced in R2015a

2 Functions — Alphabetical List

2-106

putFile
Copy file to device

Syntax
putFile(device,localSource)
putFile(device,localSource,remoteDestination)

Description
putFile(device,localSource) copies the specified source file from the MATLAB
current folder to the print working directory (pwd) on the ROS device. Wildcards are
supported.

putFile(device,localSource,remoteDestination) copies the file to a destination
path. Specify a file name at the end of the destination path to copy with a custom file
name.

Examples

Put, Get, and Delete Files on ROS Device

Put a file from your host computer onto a ROS device, get it back, and then delete it.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.154.131','user','password');

Put a new text file that is in the MATLAB® current folder onto the ROS device. The
destination folder must exist.

putFile(d,'test_file.txt','/home/user/test_folder')

 putFile

2-107

Get a text file from the ROS device. You can get any file, not just ones added from
MATLAB®. By default, the file is added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/test_file.txt')

Delete the text file on the ROS device.

deleteFile(d,'/home/user/test_folder/test_file.txt')

Put, Get, and Delete Files on ROS Device Using Wildcards

Put a file from your host computer onto a ROS device, get it back, and then delete it. Use
wildcards to search for all matching files.

Note: You must have a valid ROS device to connect to at the IP address specified in the
example.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.203.129','user','password');

Put all text files at the specified path onto the ROS device. The destination folder must
exist.

putFile(d,'C:/MATLAB/*.txt','/home/user/test_folder')

Get all text files from the ROS device. You can get any files, not just ones added from
MATLAB®. By default, the files are added to the MATLAB current folder.

getFile(d,'/home/user/test_folder/*.txt')

Delete all text files on the ROS device at the specified folder.

deleteFile(d,'/home/user/test_folder/*.txt')

Input Arguments
device — ROS device
rosdevice object

2 Functions — Alphabetical List

2-108

ROS device, specified as a rosdevice object.

localSource — Path and name of file on host computer
character vector

Path and name of the file on the host computer, specified as a character vector. You can
use an absolute path or a path relative from the MATLAB current folder. Use the path
and file naming conventions of the operating system on your host computer.
Example: 'C:\Work\.profile'
Data Types: char

remoteDestination — Destination folder path and optional file name
character vector

Destination folder path and optional file name, specified as a character vector. Specify a
file name at the end of the destination path to copy with a custom file name. Use the
Linux path and file naming conventions.
Example: '/home/user/.profile'
Data Types: char

See Also
deleteFile | dir | getFile | openShell | rosdevice | system

Introduced in R2016b

 putFile

2-109

quat2axang
Convert quaternion to axis-angle rotation

Syntax
axang = quat2axang(quat)

Description
axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle
rotation, axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 0 0];
axang = quat2axang(quat)

axang =

 1.0000 0 0 1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.

2 Functions — Alphabetical List

2-110

Example: [0.7071 0.7071 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2quat

Introduced in R2015a

 quat2axang

2-111

quat2eul
Convert quaternion to Euler angles

Syntax
eul = quat2eul(quat)
eul = quat2eul(quat,sequence)

Description
eul = quat2eul(quat) converts a quaternion rotation, quat, to the corresponding
Euler angles, eul. The default order for Euler angle rotations is 'ZYX'.

eul = quat2eul(quat,sequence) converts a quaternion into Euler angles. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is 'ZYX'.

Examples

Convert Quaternion to Euler Angles

quat = [0.7071 0.7071 0 0];
eulZYX = quat2eul(quat)

eulZYX =

 0 0 1.5708

2 Functions — Alphabetical List

2-112

Convert Quaternion to Euler Angles Using ZYZ Axis Order

quat = [0.7071 0.7071 0 0];
eulZYZ = quat2eul(quat,'ZYZ')

eulZYZ =

 1.5708 -1.5708 -1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ' | 'XYZ'

Axis rotation sequence for the Euler angles, specified as one of these character vectors:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.
• 'XYZ' – The order of rotation angles is x-axis, y-axis, z-axis.

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

 quat2eul

2-113

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-114

quat2rotm
Convert quaternion to rotation matrix

Syntax
rotm = quat2rotm(quat)

Description
rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation
matrix, rotm. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 0 0];
rotm = quat2rotm(quat)

rotm =

 1.0000 0 0
 0 -0.0000 -1.0000
 0 1.0000 -0.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix

 quat2rotm

2-115

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-116

quat2tform
Convert quaternion to homogeneous transformation

Syntax
tform = quat2tform(quat)

Description
tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation

quat = [0.7071 0.7071 0 0];
tform = quat2tform(quat)

tform =

 1.0000 0 0 0
 0 -0.0000 -1.0000 0
 0 1.0000 -0.0000 0
 0 0 0 1.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix

 quat2tform

2-117

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-118

readAllFieldNames
Get all available field names from ROS point cloud

Syntax
fieldnames = readAllFieldNames(pcloud)

Description
fieldnames = readAllFieldNames(pcloud) gets the names of all point fields that
are stored in the PointCloud2 object message, pcloud, and returns them in
fieldnames.

Examples

Read All Fields From Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read all the field names available on the point cloud message.

fieldnames = readAllFieldNames(ptcloud)

fieldnames =

 1×4 cell array

 readAllFieldNames

2-119

 'x' 'y' 'z' 'rgb'

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Output Arguments
fieldnames — List of field names in PointCloud2 object
cell array of character vectors

List of field names in PointCloud2 object, returned as a cell array of character vectors.
If no fields exist in the object, fieldname returns an empty cell array.

See Also
readField

Introduced in R2015a

2 Functions — Alphabetical List

2-120

readBinaryOccupancyGrid
Read binary occupancy grid

Syntax
map = readBinaryOccupancyGrid(msg)
map = readBinaryOccupancyGrid(msg,thresh)
map = readBinaryOccupancyGrid(msg,thresh,val)

Description
map = readBinaryOccupancyGrid(msg) returns a
robotics.BinaryOccupancyGrid object by reading the data inside a ROS message,
msg, which must be a 'nav_msgs/OccupancyGrid' message. All message data values
greater than or equal to the occupancy threshold are set to occupied, 1, in the map. All
other values, including unknown values (-1) are set to unoccupied, 0, in the map.

map = readBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for
occupied values. All values greater than or equal to the threshold are set to occupied, 1.
All other values are set to unoccupied, 0.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for
unknown values (-1). By default, all unknown values are set to unoccupied, 0.

Examples

Read Binary Occupancy Data from ROS Message

Create a occupancy grid message and populate it with data.

msg = rosmessage('nav_msgs/OccupancyGrid');
msg.Info.Height = 10;
msg.Info.Width = 10;

 readBinaryOccupancyGrid

2-121

msg.Info.Resolution = 0.1;
msg.Data = 100*rand(100,1);

Read data from message. Show the map.

map = readBinaryOccupancyGrid(msg);
show(map)

Read Binary Occupancy Data from ROS Message

Create a occupancy grid message and populate it with data.

2 Functions — Alphabetical List

2-122

msg = rosmessage('nav_msgs/OccupancyGrid');
msg.Info.Height = 10;
msg.Info.Width = 10;
msg.Info.Resolution = 0.1;
msg.Data = 100*rand(100,1);

Read data from message. Show the map.

map = readBinaryOccupancyGrid(msg);
show(map)

 readBinaryOccupancyGrid

2-123

Read Binary Occupancy Data from ROS Message Using Threshold and Unknown Value
Replacement

Create a occupancy grid message and populate it with data.

msg = rosmessage('nav_msgs/OccupancyGrid');
msg.Info.Height = 10;
msg.Info.Width = 10;
msg.Info.Resolution = 0.1;
msg.Data = 100*rand(100,1);

Read data from message. Specify the threshold value and what unknown values should
be set as. Show the map.

map = readBinaryOccupancyGrid(msg,65,1);
show(map)

2 Functions — Alphabetical List

2-124

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object
handle.

thresh — Threshold for occupied values
50 (default) | scalar

 readBinaryOccupancyGrid

2-125

Threshold for occupied values, specified as a scalar. Any value greater than or equal to
the threshold is set to occupied, 1. All other values are set to unoccupied, 0.
Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values
(-1) are set to the given value.
Data Types: double | logical

Output Arguments
map — Binary occupancy grid
BinaryOccupancyGrid object handle

Binary occupancy grid, returned as a BinaryOccupancyGrid object handle. map is
converted from a 'nav_msgs/OccupancyGrid' message on the ROS network. It is an
object with a grid of binary values, where 1 indicates an occupied location and 0
indications an unoccupied location.

See Also
robotics.BinaryOccupancyGrid | writeBinaryOccupancyGrid

Introduced in R2015a

2 Functions — Alphabetical List

2-126

readCartesian
Read laser scan ranges in Cartesian coordinates

Syntax
cart = readCartesian(scan)
cart = readCartesian(___ ,Name,Value)
[angles,cart] = readCartesian(___)

Description
cart = readCartesian(scan) converts the polar measurements of the laser scan
object, scan, into Cartesian coordinates, cart. This function uses the metadata in the
message, such as angular resolution and opening angle of the laser scanner, to perform
the conversion. Invalid range readings, usually represented as NaN, are ignored in this
conversion.

cart = readCartesian(___ ,Name,Value) provides additional options specified by
one or more Name,Value pair arguments. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

[angles,cart] = readCartesian(___) returns the scan angles, angles that are
associated with each Cartesian coordinate. Angles are measured counter-clockerwise
around the positive z-axis, with the zero angle along the x-axis. angles is returned in
radians and wrapped to the [–pi, pi] interval.

Examples

Get Cartesian Coordinates from Laser Scan

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

 readCartesian

2-127

rosinit('192.168.154.131')
sub = rossubscriber('/scan');
scan = receive(sub);

Initializing global node /matlab_global_node_60179 with NodeURI http://192.168.154.1:60889/

Read the Cartesian points from the laser scan. Plot the laser scan.

cart = readCartesian(scan);
plot(cart(:,1),cart(:,2))

Shutdown ROS network.

rosshutdown

2 Functions — Alphabetical List

2-128

Shutting down global node /matlab_global_node_60179 with NodeURI http://192.168.154.1:60889/

Get Cartesian Coordinates from Laser Scan With Scan Range

Connect to ROS network. Subscribe to a laser scan topic, and receive a message.

rosinit('192.168.154.131')
sub = rossubscriber('/scan');
scan = receive(sub);

Initializing global node /matlab_global_node_98143 with NodeURI http://192.168.154.1:60989/

Read the Cartesian points from the laser scan with specified range limits. Plot the laser
scan.

cart = readCartesian(scan,'RangeLimit',[0.5 6]);
plot(cart(:,1),cart(:,2))

 readCartesian

2-129

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_98143 with NodeURI http://192.168.154.1:60989/

Input Arguments
scan — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

2 Functions — Alphabetical List

2-130

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RangeLimits',[-2 2]

RangeLimits — Minimum and maximum range for scan in meters
[scan.RangeMin scan.RangeMax] (default) | 2-element [min max] vector

Minimum and maximum range for scan in meters, specified as a 2-element [min max]
vector. All ranges smaller than min or larger than max are ignored during the conversion
to Cartesian coordinates.

Output Arguments
cart — Cartesian coordinates of laser scan
n–by–2 matrix in meters

Cortesian coordinates of laser scan, returned as an n-by-2 matrix in meters.

angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are
measured counter-clockerwise around the positive z-axis, with the zero angle along the x-
axis. angles is returned in radians and wrapped to the [–pi, pi] interval.

See Also
plot | readScanAngles

Introduced in R2015a

 readCartesian

2-131

readField
Read point cloud data based on field name

Syntax
fielddata = readField(pcloud,fieldname)

Description
fielddata = readField(pcloud,fieldname) reads the point field from the point
cloud, pcloud, specified by fieldname and returns it in fielddata. If fieldname does
not exist, the function displays an error. To preserve the structure of the point cloud
data, see “Preserving Point Cloud Structure” on page 2-133.

Examples

Read Specific Field From Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the 'x' field name available on the point cloud message.

x = readField(ptcloud,'x');

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

2 Functions — Alphabetical List

2-132

fieldname — Field name of point cloud data
character vector

Field name of point cloud data, specified as a character vector. This character vector
must match the field name exactly. If fieldname does not exist, the function displays an
error.

Output Arguments
fielddata — List of field values from point cloud
matrix

List of field values from point cloud, returned as a matrix. Each row of is a point cloud
reading, where n is the number of points and c is the number of values for each point. If
the point cloud object being read has the PreserveStructureOnRead property set to
true, the points are returned as an h-by-w-by-c matrix. For more information, see
“Preserving Point Cloud Structure” on page 2-133.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readAllFieldNames

 readField

2-133

Introduced in R2015a

2 Functions — Alphabetical List

2-134

readImage
Convert ROS image data into MATLAB image

Syntax
img = readImage(msg)
[img,alpha] = readImage(msg)

Description
img = readImage(msg) converts the raw image data in the message object, msg, into
an image matrix, img. You can call readImage using either 'sensor_msgs/Image' or
'sensor_msgs/CompressedImage' messages.

ROS image message data is stored in a format that is not compatible with further image
processing in MATLAB. Based on the specified encoding, this function converts the data
into an appropriate MATLAB image and returns it in img.

[img,alpha] = readImage(msg) returns the alpha channel of the image in alpha. If
the image does not have an alpha channel, then alpha is empty.

Examples

Read ROS Image Data

Load sample ROS messages including a ROS image message, img.

exampleHelperROSLoadMessages

Read the ROS image message as a MATLAB® image.

image = readImage(img);

Display the image.

 readImage

2-135

imshow(image)

Input Arguments
msg — ROS image message
Image object handle | CompressedImage object handle

'sensor_msgs/Image' or 'sensor_msgs/CompressedImage' ROS image message,
specified as an Image or Compressed Image object handle.

2 Functions — Alphabetical List

2-136

Output Arguments
img — Image
grayscale image matrix | RBG image matrix | m-by-n-by-3 array

Image, returned as a matrix representing a grayscale or RGB image or as am-by-n-by-3
array, depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, returned as a uint8 grayscale image. If no alpha channel exists, alpha
is empty.

Note For CompressedImage messages, you cannot output an Alpha channel.

Supported Image Encodings
ROS image messages can have different encodings. The encodings supported for images
are different for 'sensor_msgs/Image' and 'sensor_msgs/CompressedImage'
message types. Less compressed images are supported. The following encodings for raw
images of size MxN are supported using the 'sensor_msgs/Image' message type
('sensor_msgs/CompressedImage' support is in bold):

• rgb8, rgba8, bgr8, bgra8: img is an rgb image of size MxNx3. The alpha
channel is returned in alpha. Each value in the outputs is represented as a uint8.

• rgb16, rgba16, bgr16, bgra16: img is an RGB image of size MxNx3. The alpha
channel is returned in alpha. Each value in the outputs is represented as a uint16.

• mono8 images are returned as grayscale images of size MxNx1. Each pixel value is
represented as a uint8.

• mono16 images are returned as grayscale images of size MxNx1. Each pixel value is
represented as a uint16.

• 32fcX images are returned as floating-point images of size MxNxD, where D is 1, 2,
3, or 4. Each pixel value is represented as a single.

• 64fcX images are returned as floating-point images of size MxNxD, where D is 1, 2,
3, or 4. Each pixel value is represented as a double.

 readImage

2-137

• 8ucX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a uint8.

• 8scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int8.

• 16ucX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int16.

• 16scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int16.

• 32scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int32.

• bayer_X images are returned as either Bayer matrices of size MxNx1, or as a
converted image of size MxNx3 (Image Processing Toolbox™ is required).

The following encoding for raw images of size MxN is supported using the
'sensor_msgs/CompressedImage' message type:

• rgb8, rgba8, bgr8, bgra8: img is an rgb image of size MxNx3. The alpha
channel is returned in alpha. Each output value is represented as a uint8.

See Also
writeImage

Introduced in R2015a

2 Functions — Alphabetical List

2-138

readMessages
Read messages from rosbag

Syntax
msgs = readMessages(bag)
msgs = readMessages(bag,rows)

Description
msgs = readMessages(bag) returns data from all of the messages in the
BagSelection object, bag. The messages are returned in a cell array of messages.

msgs = readMessages(bag,rows) returns data from messages in the rows specified
by rows. The maximum range of the rows is [1,bag.NumMessages].

Examples

Return ROS Messages as a Cell Array

Set file path.

filePath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');

Read rosbag and filter by topic and time.

bagselect = rosbag(filePath);
bagselect2 = select(bagselect, 'Time', ...
[bagselect.StartTime bagselect.StartTime + 1], 'Topic', '/odom');

Return All Messages as a Cell Array

allMsgs = readMessages(bagselect2);

Return The First 10 Messages as a Cell Array

 readMessages

2-139

firstMsgs = readMessages(bagselect2,1:10);

Input Arguments
bag — Message of a rosbag
BagSelection object

All the messages contained within a rosbag, specified as a BagSelection object.

rows — Rows of BagSelection object
n-by-2 matrix

Rows of BagSelection object, specified as an n-by-2 matrix, where n is the number of
rows to retrieve messages from. The maximum range of the rows is [1,
bag.NumMessage].

Output Arguments
msgs — ROS message object handle
handle | cell array

ROS message object handle, returned as a handle or cell array. ROS messages are
retrieved from the BagSelection object.

See Also
rosbag | select | timeseries

Introduced in R2015a

2 Functions — Alphabetical List

2-140

readRGB
Extract RGB values from point cloud data

Syntax
rgb = readRGB(pcloud)

Description
rgb = readRGB(pcloud) extracts the [r g b] values from all points in the point
cloud object, pcloud, and returns them as an n-by-3 of n 3-D point coordinates. If the
point cloud does not contain the RGB field, this function displays an error. To preserve
the structure of the point cloud data, see “Preserving Point Cloud Structure” on page 2-
142.

Examples

Read RGB Values from ROS Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the RGB values from the point cloud.

rgb = readRGB(ptcloud);

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

 readRGB

2-141

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Output Arguments
rgb — List of RGB values from point cloud
matrix

List of RGB values from point cloud, returned as a matrix. By default, this is an n-by-3
matrix. If the point cloud object being read has the PreserveStructureOnRead
property set to true, the points are returned as an h-by-w-by-3 matrix. For more
information, see “Preserving Point Cloud Structure” on page 2-142.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose that you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as an x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readField | readXYZ

Introduced in R2015a

2 Functions — Alphabetical List

2-142

readScanAngles
Return scan angles for laser scan range readings

Syntax
angles = readScanAngles(scan)

Description
angles = readScanAngles(scan) calculates the scan angles, angles, corresponding
to the range readings in the laser scan message, scan. Angles are measured counter-
clockerwise around the positive z-axis, with the zero angle along the x-axis. angles is
returned in radians and wrapped to the [–pi, pi] interval.

Examples

Read Scan Angles from ROS Laser Scan Message

Load sample ROS messages including a ROS laser scan message, scan.

exampleHelperROSLoadMessages

Read the scan angles from the laser scan.

angles = readScanAngles(scan);

Input Arguments
scan — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

 readScanAngles

2-143

Output Arguments
angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are
measured counter-clockerwise around the positive z-axis, with the zero angle along the x-
axis. angles is returned in radians and wrapped to the [–pi, pi] interval.

See Also
plot | readCartesian

Introduced in R2015a

2 Functions — Alphabetical List

2-144

readXYZ
Extract XYZ coordinates from point cloud data

Syntax
xyz = readXYZ(pcloud)

Description
xyz = readXYZ(pcloud) extracts the [x y z] coordinates from all points in the point
cloud object, pcloud, and returns them as an n-by-3 matrix of n 3-D point coordinates. If
the point cloud does not contain the x, y, and z fields, this function returns an error.
Points that contain NaN are preserved in the output. To preserve the structure of the
point cloud data, see “Preserving Point Cloud Structure” on page 2-146.

Examples

Read XYZ Values from ROS Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the XYZ values from the point cloud.

xyz = readXYZ(ptcloud);

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

 readXYZ

2-145

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Output Arguments
xyz — List of XYZ values from point cloud
matrix

List of XYZ values from point cloud, returned as a matrix. By default, this is a n-by-3
matrix. If the point cloud object being read has the PreserveStructureOnRead
property set to true, the points are returned as an h-by-w-by-3 matrix. For more
information, see “Preserving Point Cloud Structure” on page 2-146.

Preserving Point Cloud Structure
Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readField | readRGB

Introduced in R2015a

2 Functions — Alphabetical List

2-146

receive
Wait for new ROS message

Syntax
msg = receive(sub)
msg = receive(sub,timeout)

Description
msg = receive(sub) waits for MATLAB to receive a topic message from the specified
subscriber, sub, and returns it as msg.

msg = receive(sub,timeout) specifies in timeout the number of seconds to wait for
a message. If a message is not received within the timeout limit, the software throws an
error.

Examples

Create A Subscriber and Get Data From ROS

Connect to a ROS network. Set up a sample ROS network. The '/scan' topic is being
published on the network.

rosinit
exampleHelperROSCreateSampleNetwork

Initializing ROS master on http://bat5823win64:55081/.
Initializing global node /matlab_global_node_85183 with NodeURI http://bat5823win64:55085/

Create a subscriber for the '/scan' topic. Wait for the subscriber to register with the
master.

sub = rossubscriber('/scan');
pause(1);

 receive

2-147

Receive data from the subscriber as a ROS mesasge. Specify a 10 second timeout.

msg2 = receive(sub,10)

msg2 =

 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1x1 Header]
 AngleMin: -0.5216
 AngleMax: 0.5243
 AngleIncrement: 0.0016
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640x1 single]
 Intensities: [0x1 single]

 Use showdetails to show the contents of the message

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_85183 with NodeURI http://bat5823win64:55085/
Shutting down ROS master on http://bat5823win64:55081/.

Create, Send, And Receive ROS Messages

Set up a publisher and subscriber to send and receive a message on a ROS network.

Connect to a ROS network.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_10876 with NodeURI http://AH-SRADFORD:65135/

Create a publisher with a specific topic and message type. You can also return a default
message to send using this publisher.

2 Functions — Alphabetical List

2-148

[pub,msg] = rospublisher('position','geometry_msgs/Point');

Modify the message before sending over the network.

msg.X = 1;
msg.Y = 2;
send(pub,msg);

Create a subscriber and wait for the latest message. Verify the message is the one you
sent.

sub = rossubscriber('position')
pause(1);
sub.LatestMessage

sub =

 Subscriber with properties:

 TopicName: '/position'
 MessageType: 'geometry_msgs/Point'
 LatestMessage: [0×1 Point]
 BufferSize: 1
 NewMessageFcn: []

ans =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 1
 Y: 2
 Z: 0

 Use showdetails to show the contents of the message

Shut down ROS network.

rosshutdown

 receive

2-149

Shutting down global node /matlab_global_node_10876 with NodeURI http://AH-SRADFORD:65135/
Shutting down ROS master on http://AH-SRADFORD:11311/.

Read Specific Field From Point Cloud Message

Load sample ROS messages including a ROS point cloud message, ptcloud.

exampleHelperROSLoadMessages

Read the 'x' field name available on the point cloud message.

x = readField(ptcloud,'x');

• “Exchange Data with ROS Publishers and Subscribers”

Input Arguments
sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the subscriber
using rossubscriber.

timeout — Timeout for receiving a message
scalar in seconds

Timeout for receiving a message, specified as a scalar in seconds.

Output Arguments
msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

See Also
rosmessage | rospublisher | rossubscriber | rostopic | send

2 Functions — Alphabetical List

2-150

Topics
“Exchange Data with ROS Publishers and Subscribers”

Introduced in R2015a

 receive

2-151

removeInvalidData
Remove invalid range and angle data

Syntax
validScan = removeInvalidData(scan)
validScan = removeInvalidData(scan,Name,Value)

Description
validScan = removeInvalidData(scan)returns a new lidarScan object with all
Inf and NaN values from the input scan removed. The corresponding angle readings are
also removed.

validScan = removeInvalidData(scan,Name,Value)provides additional options
specified by one or more Name,Value pairs.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside
of the sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

2 Functions — Alphabetical List

2-152

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

 removeInvalidData

2-153

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

2 Functions — Alphabetical List

2-154

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ['RangeLimits',[0.05 2]

RangeLimits — Range reading limits
two-element vector

Range reading limits, specified as a two-element vector, [minRange maxRange], in
meters. All range readings and corresponding angles outside these range limits are
removed
Data Types: single | double

AngleLimits — Angle limits
two-element vector

Angle limits, specified as a two-element vector, [minAngle maxAngle] in radians. All
angles and corresponding range readings outside these angle limitslimits are removed.

Angles are measured counter-clockwise around the positivez-axis.
Data Types: single | double

Output Arguments
validScan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object. All invalid lidar scan readings are
removed.

See Also
lidarScan | matchScans | transformScan

Introduced in R2017b

 removeInvalidData

2-155

reset
Reset Rate object

Syntax
reset(rate)

Description
reset(rate) resets the state of the Rate object, including the elapsed time and all
statistics about previous periods. reset is useful if you want to run multiple successive
loops at the same rate, or if the object is created before the loop is executed.

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired
rate and other information about the execution. See robotics.Rate for more
information.

Examples

Run Loop At Fixed Rate and Reset Rate Object

Create a Rate object for running at 20 Hz.

r = robotics.Rate(2);

Start a loop and control operation using the Rate object.

2 Functions — Alphabetical List

2-156

for i = 1:30
 % Your code goes here
 waitfor(r);
end

Display the Rate object properties after loop operation.

disp(r)

 Rate with properties:

 DesiredRate: 2
 DesiredPeriod: 0.5000
 OverrunAction: 'slip'
 TotalElapsedTime: 15.0247
 LastPeriod: 0.4998

Reset the object to restart the time statistics.

reset(r);
disp(r)

 Rate with properties:

 DesiredRate: 2
 DesiredPeriod: 0.5000
 OverrunAction: 'slip'
 TotalElapsedTime: 0.0013
 LastPeriod: NaN

• “Execute Code at a Fixed-Rate”

See Also
robotics.Rate | rosrate | waitfor

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a

 reset

2-157

roboticsAddons
Install add-ons for robotics

Syntax
roboticsAddons

Description
roboticsAddons allows you to download and install add-ons for Robotics System
Toolbox. Use this function to open the Add-ons Explorer to browse the available add-ons.

Examples

Install Add-ons for Robotics System Toolbox™

roboticsAddons

• “Install Robotics System Toolbox Add-ons”
• “ROS Custom Message Support”
• “Get Add-Ons” (MATLAB)
• “Manage Your Add-Ons” (MATLAB)

See Also

Topics
“Install Robotics System Toolbox Add-ons”
“ROS Custom Message Support”
“Get Add-Ons” (MATLAB)
“Manage Your Add-Ons” (MATLAB)

2 Functions — Alphabetical List

2-158

Introduced in R2016a

 roboticsAddons

2-159

roboticsSupportPackages
Download and install support packages for Robotics System Toolbox

Note roboticsSupportPackages has been removed. Use roboticsAddons instead.

Syntax
roboticsSupportPackages

Description
roboticsSupportPackages opens the Support Package Installer to download and
install support packages for Robotics System Toolbox. For more details, see “Install
Robotics System Toolbox Add-ons”

Examples

Open Robotics System Toolbox Support Package Installer

roboticsSupportPackages

Introduced in R2015a

2 Functions — Alphabetical List

2-160

rosaction
Retrieve information about ROS actions

Syntax
rosaction list
rosaction info actionname
rosaction type actionname

actionlist = rosaction('list')
actioninfo = rosaction('info',actionname)
actiontype = rosaction('type',actionname)

Description
rosaction list returns a list of available ROS actions from the ROS network.

rosaction info actionname returns the action type, message types, action server,
and action clients for the specified action name.

rosaction type actionname returns the action type for the specified action name.

actionlist = rosaction('list') returns a list of available ROS actions from the
ROS network.

actioninfo = rosaction('info',actionname) returns a structure containing the
action type, message types, action server, and action clients for the specified action name.

actiontype = rosaction('type',actionname) returns the action type for the
specified action name.

Examples

 rosaction

2-161

Get Information About ROS Actions

Get information about ROS actions that are available from the ROS network. You must
be connected to a ROS network using rosinit.

Connect to a ROS network. You must be connected to a ROS network to gather
information about what actions are available. Action types must be set up beforehand
with a ROS action server running on the network. Replace ipaddress with your
network address.

ipaddress = '192.168.154.131';
rosinit(ipaddress)

Initializing global node /matlab_global_node_87036 with NodeURI http://192.168.154.1:62768/

List the actions available on the network. The only action setup on this network is the '/
fibonacci' action.

rosaction list

/fibonacci

Get information about a specific ROS action type. The action type, message types, action
server, and clients are displayed.

rosaction info /fibonacci

Action Type: actionlib_tutorials/Fibonacci

Goal Message Type: actionlib_tutorials/FibonacciGoal
Feedback Message Type: actionlib_tutorials/FibonacciFeedback
Result Message Type: actionlib_tutorials/FibonacciResult

Action Server:
* /fibonacci (http://192.168.154.131:38213/)

Action Clients: None

Disconnect from the ROS network.

rosshutdown

2 Functions — Alphabetical List

2-162

Shutting down global node /matlab_global_node_87036 with NodeURI http://192.168.154.1:62768/

Input Arguments
actionname — ROS action name
character vector

ROS action name, specified as a character vector. The action name must match one of the
topics that rosaction('list') outputs.

Output Arguments
actionlist — List of actions available
cell array of character vectors

List of actions available on the ROS network, returned as a cell array of character
vectors.

actioninfo — Information about a ROS action
structure

Information about a ROS action, returned as a structure. actioninfo contains the
following fields:

• ActionType
• GoalMessageType
• FeedbackMessageType
• ResultMessageType
• ActionServer
• ActionClients

For more information about ROS actions, see “ROS Actions Overview”.

actiontype — Type of ROS action
character vector

Type of ROS action, returned as a character vector.

 rosaction

2-163

See Also
cancelGoal | rosmessage | rostopic | sendGoal | waitForServer

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

Introduced in R2016b

2 Functions — Alphabetical List

2-164

rosactionclient
Create ROS action client

Syntax
client = rosactionclient(actionname)
client = rosactionclient(actionname,actiontype)
[client,goalMsg] = rosactionclient(___)

Description
client = rosactionclient(actionname) creates a client for the specified ROS
action name. The client determines the action type automatically. If the action is not
available, this function displays an error.

Use rosactionclient to connect to an action server and request the execution of action
goals. You can get feedback on the execution progress and cancel the goal at any time.

client = rosactionclient(actionname,actiontype) creates an action client
with the specified name and type. If the action is not available, or the name and type do
no match, the function displays an error.

[client,goalMsg] = rosactionclient(___) returns a goal message to send the
action client created using any of the arguments from the previous syntaxes. The goal
message is initialized with default values for that message.

If the ActionFcn, FeedbackFcn, and ResultFcn callbacks are defined, they are called
when the goal is processing on the action server. All callbacks associated with a
previously sent goal are disabled, but the previous goal is not canceled.

Examples

 rosactionclient

2-165

Setup a ROS Action Client and Execute an Action

This example shows how to create a ROS action client and execute the action. Action
types must be setup beforehand with an action server running.

You must have the '/fibonacci' action type setup. To run this action server use the
following command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

Connect to a ROS network. You must be connected to a ROS network to gather
information about what actions are available. Replace ipaddress with your network
address.

ipaddress = '192.168.154.131';
rosinit(ipaddress)

Initializing global node /matlab_global_node_68978 with NodeURI http://192.168.154.1:51256/

List actions available on the network. The only action setup on this network is the '/
fibonacci' action.

rosaction list

/fibonacci

Create an action client. Specify the action name.

[actClient,goalMsg] = rosactionclient('/fibonacci');

Wait for action client to connect to server.

waitForServer(actClient);

The fibonacci action will calculate the fibonacci sequence for a given order specified in
the goal message. The goal message was returned when creating the action client and
can be modified to send goals to the ROS action server.

goalMsg.Order = 8

goalMsg =

 ROS FibonacciGoal message with properties:

2 Functions — Alphabetical List

2-166

 MessageType: 'actionlib_tutorials/FibonacciGoal'
 Order: 8

 Use showdetails to show the contents of the message

Send goal and wait for its completion. Specify a timeout of 10 seconds to complete the
action.

[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg,10)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Final state succeeded with result:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

resultMsg =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [10×1 int32]

 Use showdetails to show the contents of the message

resultState =

 1×9 char array

 rosactionclient

2-167

succeeded

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_68978 with NodeURI http://192.168.154.1:51256/

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

2 Functions — Alphabetical List

2-168

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Input Arguments
actionname — ROS action name
character vector

ROS action name, specified as a character vector. The action name must match one of the
topics that rosaction('list') outputs.

actiontype — Type of ROS action
character vector

Type of ROS action, returned as a character vector.

 rosactionclient

2-169

Output Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, returned as a SimpleActionClient object handle. This simple action
client enables you to track a single goal at a time.

goalMsg — ROS action goal message
Message object handle

ROS action goal message, returned as a Message object handle. Update this message
with your goal details and send it to the ROS action client using sendGoal or
sendGoalAndWait.

See Also
SimpleActionClient | cancelGoal | rosaction | rosmessage | sendGoal |
waitForServer

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

Introduced in R2016b

2 Functions — Alphabetical List

2-170

rosbag
Open and parse rosbag log file

Syntax
bag = rosbag(filename)

Description
bag = rosbag(filename) creates an indexable BagSelection object, bag, that
contains all the message indexes from the rosbag located at path filename. To access
the data, you can call readMessages or timeseries to extract relevant data.

A rosbag, or bag, is a file format for storing ROS message data. They are used primarily
to log messages within the ROS network. You can use these bags for offline analysis,
visualization, and storage.

This function supports version 2.0 of the rosbag file format. It also supports only
uncompressed rosbags. See the ROS Wiki page for more information about rosbags and
Bag version 2.0.

Examples

Retrieve information from rosbag

Set the path to a rosbag file.

filePath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');

Retrieve information from the rosbag

bagselect = rosbag(filePath);

Select a subset of the messages, filtered by time and topic.

 rosbag

2-171

http://wiki.ros.org/rosbag
http://wiki.ros.org/Bags/Format/2.0

bagselect2 = select(bagselect, 'Time', ...
[bagselect.StartTime bagselect.StartTime + 1], 'Topic', '/odom');

Input Arguments
filename — Name of rosbag file and its path
character vector

Name of file and its path, for the rosbag you want to access, specified as a character
vector. This path can be relative or absolute.

Output Arguments
bag — Selection of rosbag messages
BagSelection object handle

Selection of rosbag messages, returned as a BagSelection object handle.

See Also
readMessages | select | timeseries

Introduced in R2015a

2 Functions — Alphabetical List

2-172

rosduration
Create a ROS duration object

Syntax
dur = rosduration
dur = rosduration(totalSecs)
dur = rosduration(secs,nsecs)

Description
dur = rosduration returns a default ROS duration object. The properties for seconds
and nanoseconds are set to 0.

dur = rosduration(totalSecs) initializes the time values for seconds and
nanoseconds based on totalSecs, which represents the time in seconds as a floating-
point number.

dur = rosduration(secs,nsecs) initializes the time values for seconds and
nanoseconds individually. Both inputs must be integers. Large values for nsecs are
wrapped automatically with the remainder added to secs.

Examples

Work with ROS Duration Objects

Create ROS Duration objects, perform addition and subtraction, and compare duration
objects. You can also add duration objects to ROS Time objects to get another Time
object.

Create a duration using seconds and nanoseconds.

dur1 = rosduration(100,2000000)

 rosduration

2-173

dur1 =

 ROS Duration with properties:

 Sec: 100
 Nsec: 2000000

Create a duration using a floating-point value. This sets the seconds using the integer
portion and nanoseconds with the remainder.

dur2 = rosduration(20.5)

dur2 =

 ROS Duration with properties:

 Sec: 20
 Nsec: 500000000

Add the two durations together to get a single duration.

dur3 = dur1 + dur2

dur3 =

 ROS Duration with properties:

 Sec: 120
 Nsec: 502000000

Subtract durations and get a negative duration. You can initialize durations with
negative values as well.

dur4 = dur2 - dur1
dur5 = rosduration(-1,2000000)

dur4 =

2 Functions — Alphabetical List

2-174

 ROS Duration with properties:

 Sec: -80
 Nsec: 498000000

dur5 =

 ROS Duration with properties:

 Sec: -1
 Nsec: 2000000

Compare durations.

dur1 > dur2

ans =

 logical

 1

Add a duration to a ROS Time object.

time = rostime('now','system')
timeFuture = time + dur3

time =

 ROS Time with properties:

 Sec: 1.5043e+09
 Nsec: 251000000

timeFuture =

 ROS Time with properties:

 Sec: 1.5043e+09

 rosduration

2-175

 Nsec: 753000000

Input Arguments
totalSecs — Total time
0 (default) | scalar

Total time, specified as a floating-point scalar. The integer portion is set to the Sec
property with the remainder applied to Nsec property of the Duration object.

secs — Whole seconds
0 (default) | integer

Whole seconds, specified as an integer. This value is directly set to the Sec property of
the Duration object.

Note The maximum and minimum values for secs are [-2147483648, 2147483647].

nsecs — Nanoseconds
0 (default) | positive integer

Nanoseconds, specified as a positive integer. This value is directly set to the NSec
property of the Duration object unless it is greater than or equal to 109. The value is
then wrapped and the remainders are added to the value of secs.

Output Arguments
dur — Duration
ROS Duration object

Duration, returned as a ROS Duration object with Sec and Nsec properties.

See Also
rosmessage | rostime | seconds

2 Functions — Alphabetical List

2-176

Introduced in R2016b

 rosduration

2-177

rosgenmsg
Generate custom messages from ROS definitions

Syntax
rosgenmsg(folderpath)

Description
rosgenmsg(folderpath) generates ROS custom messages in MATLAB by reading
ROS custom message and service definitions in the specified folder path. The function
expects ROS package folders inside the folder path. These packages contain the message
definitions in .msg files and the service definitions in .srv files. Also, the packages
require a package.xml file to define its contents.

After calling this function, you can send and receive your custom messages in MATLAB
like all other supported messages. You can create these messages using rosmessage or
view the list of messages by calling rosmsg list.

Note You must install the Robotics System Toolbox Interface for ROS Custom Messages
add-on using roboticsAddons to use this function.

Examples

Generate MATLAB Code for ROS Custom Messages

After you install the support package and prepare your custom message package folder,
specify the folder path and call rosgenmsg.

2 Functions — Alphabetical List

2-178

folderpath = 'C:/Users/user1/Documents/robot_custom_msg/';
rosgenmsg(folderpath)

• “Create Custom Messages from ROS Package”

Input Arguments
folderpath — Path to ROS package folders
character vector

Path to package folders, specified as a character vector. These folders contain message
definitions in .msg files and the service definitions in .srv files. Also, the packages
require a package.xml file to define its contents.

Limitations
• You must install the Robotics System Toolbox Interface for ROS Custom Messages

add-on using roboticsAddons to use this function.

See Also
roboticsAddons

Topics
“Create Custom Messages from ROS Package”
“ROS Custom Message Support”

External Websites
ROS Tutorials: Defining Custom Messages
ROS Tutorials: Creating a ROS msg and srv

Introduced in R2015a

 rosgenmsg

2-179

http://wiki.ros.org/ROS/Tutorials/DefiningCustomMessages
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv

rosinit
Connect to ROS network

Syntax
rosinit
rosinit(hostname)
rosinit(hostname,port)
rosinit(URI)
rosinit(___ ,Name,Value)

Description
rosinit starts the global ROS node with a default MATLAB name and tries to connect
to a ROS master running on localhost and port 11311. If the global ROS node cannot
connect to the ROS master, rosinit also starts a ROS core in MATLAB, which consists
of a ROS master, a ROS parameter server, and a rosout logging node.

rosinit(hostname) tries to connect to the ROS master at the host name or IP address
specified by hostname. This syntax uses 11311 as the default port number.

rosinit(hostname,port) tries to connect to the host name or IP address specified by
hostname and the port number specified by port.

rosinit(URI) tries to connect to the ROS master at the given resource identifier, URI,
for example, 'http://192.168.1.1:11311'.

rosinit(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (' '). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Using rosinit is a prerequisite for most ROS-related tasks in MATLAB because:

• Communicating with a ROS network requires a ROS node connected to a ROS
master.

2 Functions — Alphabetical List

2-180

• By default, ROS functions in MATLAB operate on the global ROS node, or they
operate on objects that depend on the global ROS node.

For example, after creating a global ROS node with rosinit, you can subscribe to a
topic on the global ROS node. When another node on the ROS network publishes
messages on that topic, the global ROS node receives the messages.

If a global ROS node already exists, then rosinit restarts the global ROS node based on
the new set of arguments.

For more advanced ROS networks, connecting to multiple ROS nodes or masters is
possible using the Node object.

Examples

Start ROS Core and Global Node

rosinit

Initializing ROS master on http://bat5823win64:54548/.
Initializing global node /matlab_global_node_20607 with NodeURI http://bat5823win64:54552/

When you are finished, shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_20607 with NodeURI http://bat5823win64:54552/
Shutting down ROS master on http://bat5823win64:54548/.

Start Node and Connect to ROS Master at Specified IP Address

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_76850 with NodeURI http://192.168.154.1:50698/

Shut down the ROS network when you are finished.

rosshutdown

 rosinit

2-181

Shutting down global node /matlab_global_node_76850 with NodeURI http://192.168.154.1:50698/

Start Global Node at Given IP and NodeName

rosinit('192.168.154.131', 'NodeHost','192.168.1.1','NodeName','/test_node')

Initializing global node /test_node with NodeURI http://192.168.1.1:59577/

Shut down the ROS network when you are finished.

rosshutdown

Shutting down global node /test_node with NodeURI http://192.168.1.1:59577/

• “Connect to a ROS Network”

Input Arguments
hostname — Host name or IP address
character vector

Host name or IP address, specified as a character vector.

port — Port number
scalar

Port number used to connect to the ROS master, specified as a scalar.

URI — URI for ROS master
character vector

URI for ROS master, specified as a character vector. Standard format for URIs is either
http://ipaddress:port or http://hostname:port

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2 Functions — Alphabetical List

2-182

Example: 'NodeHost','192.168.1.1'

NodeHost — Host name or IP address
character vector

Host name or IP address under which the node advertises itself to the ROS network,
specified as the comma-separated pair consisting of’ 'NodeHost' and a character vector.
Example: 'comp-home'

NodeName — Global node name
character vector

Global node name, specified as the comma-separated pair consisting of 'NodeName' and a
character vector. The node that is created through rosinit is registered on the ROS
network with this name.
Example: 'NodeName','/test_node'

See Also
Node | rosshutdown

Topics
“Connect to a ROS Network”

Introduced in R2015a

 rosinit

2-183

rosmessage
Create ROS messages

Syntax
msg = rosmessage(messagetype)

msg = rosmessage(pub)
msg = rosmessage(sub)
msg = rosmessage(client)
msg = rosmessage(server)

Description
msg = rosmessage(messagetype) creates an empty ROS message object with
message type. The messagetype character vector is case-sensitive and no partial
matches are allowed. It must match a message on the list given by calling
rosmsg('list').

msg = rosmessage(pub) creates an empty message determined by the topic published
by pub.

msg = rosmessage(sub) creates an empty message determined by the subscribed
topic of sub.

msg = rosmessage(client) creates an empty message determined by the service
associated with client.

msg = rosmessage(server) creates an empty message determined by the service type
of server.

Examples

2 Functions — Alphabetical List

2-184

Create Empty String Message

strMsg = rosmessage('std_msgs/String')

strMsg =

 ROS String message with properties:

 MessageType: 'std_msgs/String'
 Data: ''

 Use showdetails to show the contents of the message

Create a ROS Publisher and Send Data

Connect to a ROS network.

rosinit

Initializing ROS master on http://bat5823win64:54364/.
Initializing global node /matlab_global_node_55095 with NodeURI http://bat5823win64:54368/

Create publisher for the '/chatter' topic with the 'std_msgs/String' message type.

chatpub = rospublisher('/chatter','std_msgs/String');

Create a message to send. Specify the Data property.

msg = rosmessage(chatpub);
msg.Data = 'test phrase';

Send message via the publisher.

send(chatpub,msg);

Shutdown ROS network.

rosshutdown

 rosmessage

2-185

Shutting down global node /matlab_global_node_55095 with NodeURI http://bat5823win64:54368/
Shutting down ROS master on http://bat5823win64:54364/.

Create and Access An Array Of ROS Messages

You can create an object array to store multiple messages. The array is indexable similar
to any other array. You can modify properties of each object or access specific properties
from each element using dot notation.

Create a two message object array.

msgArray = [rosmessage('std_msgs/String') rosmessage('std_msgs/String')]

msgArray =

 1x2 ROS String message array with properties:

 MessageType
 Data

Assign data to individual object elements of the array.

msgArray(1).Data = 'Some string';
msgArray(2).Data = 'Other string';

Read all the Data properties from the message objects into a cell array.

allData = {msgArray.Data}

allData =

 1x2 cell array

 {'Some string'} {'Other string'}

Preallocate A ROS Message Array

To preallocate an array using ROS messages, use the arrayfun or cellfun functions
instead of repmat. These functions create object or cell arrays for handle classes
properly.

2 Functions — Alphabetical List

2-186

Preallocate an object array of ROS messages.

msgArray = arrayfun(@(~) rosmessage('std_msgs/String'),zeros(1,50));

Preallocate a cell array of ROS messages.

msgCell = cellfun(@(~) rosmessage('std_msgs/String'),cell(1,50),'UniformOutput',false);

Input Arguments
messagetype — Message type
character vector

Message type, specified as a character vector. The character vector is case-sensitive and
no partial matches are allowed. It must match a message on the list given by calling
rosmsg('list'). To avoid errors in entering the message type, you can use rostype
with tab completion to browse the list of all available types.

pub — ROS publisher
Publisher object handle

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the object
using rossubscriber.

client — ROS service client
ServiceClient object handle

ROS service client, specified as a ServiceClient object handle. You can create the
object using rossvcclient.

server — ROS service server
ServiceServer object handle

ROS service server, specified as a ServiceServer object handle. You can create the
object using rossvcserver.

 rosmessage

2-187

Output Arguments
msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

See Also
roboticsAddons | rosmsg | rostopic

Topics
“Work with Basic ROS Messages”
“Built-In Message Support”

Introduced in R2015a

2 Functions — Alphabetical List

2-188

rosmsg
Retrieve information about ROS messages and message types

Syntax
rosmsg show msgtype
rosmsg md5 msgtype
rosmsg list

msginfo = rosmsg('show', msgtype)
msgmd5 = rosmsg('md5', msgtype)
msglist = rosmsg('list')

Description
rosmsg show msgtype returns the definition of the msgtype message.

rosmsg md5 msgtype returns the MD5 checksum of the msgtype message.

rosmsg list returns all available message types that you can use in MATLAB.

msginfo = rosmsg('show', msgtype) returns the definition of the msgtype
message as a character vector.

msgmd5 = rosmsg('md5', msgtype) returns the ‘MD5’ checksum of the msgtype
message as a character vector.

msglist = rosmsg('list') returns a cell array containing all available message
types that you can use in MATLAB.

Examples

 rosmsg

2-189

Retrieve Message Type Definition

msgInfo = rosmsg('show','geometry_msgs/Point')

msgInfo =

 '% This contains the position of a point in free space
 double X
 double Y
 double Z
 '

Get the MD5 Checksum of Message Type

msgMd5 = rosmsg('md5','geometry_msgs/Point')

msgMd5 =

 '4a842b65f413084dc2b10fb484ea7f17'

Input Arguments
msgtype — ROS message type
character vector

ROS message type, specified as a character vector. msgType must be a valid ROS
message type from ROS that MATLAB supports.
Example: 'std_msgs/Int8'

Output Arguments
msginfo — Details of message definition
character vector

2 Functions — Alphabetical List

2-190

Details of the information inside the ROS message definition, returned as a character
vector.

msgmd5 — MD5 checksum hash value
character vector

MD5 checksum hash value, returned as a character vector. The MD5 output is a
character vector representation of the 16-byte hash value that follows the MD5 standard.

msglist — List of all message types available in MATLAB
cell array of character vectors

List of all message types available in MATLAB, returned as a cell array of character
vectors.

Introduced in R2015a

 rosmsg

2-191

rosnode
Retrieve information about ROS network nodes

Syntax
rosnode list
rosnode info nodename
rosnode ping nodename

nodelist = rosnode('list')
nodeinfo = rosnode('info',nodename)
rosnode('ping',nodename)

Description
rosnode list returns a list of all nodes registered on the ROS network. Use these
nodes to exchange data between MATLAB and the ROS network.

rosnode info nodename returns a structure containing the name, URI, publications,
subscriptions, and services of a specific ROS node,nodename.

rosnode ping nodename pings a specific node, nodename, and displays the response
time.

nodelist = rosnode('list') returns a cell array of character vectors containing the
nodes registered on the ROS network.

nodeinfo = rosnode('info',nodename) returns a structure containing the name,
URI, publications, subscriptions, and services of a specific ROS node, nodename.

rosnode('ping',nodename) pings a specific node, nodename and displays the
response time.

Examples

2 Functions — Alphabetical List

2-192

Retrieve List of ROS Nodes

Note: This example requires a valid ROS network to be active with ROS nodes
previously set up.

Connect to the ROS network. Specify the IP address for your specific network.

rosinit('192.168.203.129')

Initializing global node /matlab_global_node_90274 with NodeURI http://192.168.203.1:63594/

List the nodes available from the ROS master.

rosnode list

/bumper2pointcloud
/cmd_vel_mux
/depthimage_to_laserscan
/gazebo
/laserscan_nodelet_manager
/matlab_global_node_90274
/mobile_base_nodelet_manager
/robot_state_publisher
/rosout

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_90274 with NodeURI http://192.168.203.1:63594/

Retrieve ROS Node Information

Connect to the ROS network. Specify the IP address for your specific network.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_40513 with NodeURI http://192.168.154.1:61991/

Get information on the '/robot_state_publisher' node. This node is available on
the ROS master.

nodeinfo = rosnode('info','/robot_state_publisher')

 rosnode

2-193

nodeinfo =

 struct with fields:

 NodeName: '/robot_state_publisher'
 URI: 'http://192.168.154.131:40244/'
 Publications: [2×1 struct]
 Subscriptions: [2×1 struct]
 Services: [2×1 struct]

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40513 with NodeURI http://192.168.154.1:61991/

Ping ROS Node

Connect to the ROS network. Specify the IP address for your specific network.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_88195 with NodeURI http://192.168.154.1:50275/

Ping the '/robot_state_publisher' node. This node is available on the ROS master.

nodeinfo = rosnode('info','/robot_state_publisher')

nodeinfo =

 struct with fields:

 NodeName: '/robot_state_publisher'
 URI: 'http://192.168.154.131:40244/'
 Publications: [2×1 struct]
 Subscriptions: [2×1 struct]
 Services: [2×1 struct]

Shut down the ROS network.

2 Functions — Alphabetical List

2-194

rosshutdown

Shutting down global node /matlab_global_node_88195 with NodeURI http://192.168.154.1:50275/

Input Arguments
nodename — Name of node
character vector

Name of node, specified as a character vector. The name of the node must match the
name given in ROS.

Output Arguments
nodeinfo — Information about ROS node
structure

Information about ROS node, returned as a structure containing these properties:
'NodeName', 'URI', 'Publications', 'Subscriptions', and 'Services'. Access
these properties using dot syntax, for example, nodeinfo.NodeName.

nodelist — List of node names available
cell array of character vectors

List of node names available, returned as a cell array of character vectors.

See Also
rosinit | rostopic

Introduced in R2015a

 rosnode

2-195

rosparam
Access ROS parameter server values

Syntax
list = rosparam('list')
list = rosparam('list',namespace)
pvalOut = rosparam('get',pname)
pvalOut = rosparam('get',namespace)
rosparam('set',pname,pval)
rosparam('delete',pname)
rosparam('delete',namespace)

ptree = rosparam

Description
list = rosparam('list') returns the list of all ROS parameter names from the ROS
master.

Simplified form: rosparam list

list = rosparam('list',namespace) returns the list of all parameter names under
the specified ROS namespace.

Simplified form: rosparam list namespace

pvalOut = rosparam('get',pname) retrieves the value of the specified parameter.

Simplified form: rosparam get pname

pvalOut = rosparam('get',namespace) retrieves the values of all parameters
under the specified namespace as a structure.

Simplified form: rosparam get namespace

2 Functions — Alphabetical List

2-196

rosparam('set',pname,pval) sets a value for a specified parameter name. If the
parameter name does not exist, the function adds a new parameter in the parameter
tree.

Simplified form: rosparam set pname pval

See “Limitations” on page 2-203 for limitations on pval.

rosparam('delete',pname) deletes a parameter from the parameter tree. If the
parameter does not exist, the function displays an error.

Simplified form: rosparam delete pname

rosparam('delete',namespace) deletes all parameters under the given namespace
from the parameter tree.

Simplified form: rosparam delete namespace

ptree = rosparam creates a parameter tree object, ptree. After ptree is created, the
connection to the parameter server remains persistent until the object is deleted or the
ROS master becomes unavailable.

A ROS parameter tree communicates with the ROS parameter server. The ROS
parameter server can store strings, integers, doubles, booleans and cell arrays. The
parameters are accessible by every node in the ROS network. Use the parameters to
store static data such as configuration parameters. Use the get, set, has, search, and
del functions to manipulate and view parameter values.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• boolean — logical
• double — double
• string — character vector (char)
• list — cell array (cell)
• dictionary — structure (struct)

 rosparam

2-197

Examples

Get and Set Parameter Values

Connect to a ROS network to set and get ROS parameter values on the ROS parameter
tree. You can get lists of parameters in their given namespaces as well. This example
uses the simplified form that mimics the ROS command-line interface.

Connect to a ROS network.

rosinit

Initializing ROS master on http://bat5823win64:54836/.
Initializing global node /matlab_global_node_21754 with NodeURI http://bat5823win64:54840/

Set parameter values.

rosparam set /string_param 'param_value'
rosparam set /double_param 1.2

To set a list parameter, use the functional form.

rosparam('set', '/list_param', {int32(5), 124.1, -20, 'some_string'});

Get the list of parameters using the command-line form.

rosparam list

/double_param
/list_param
/string_param

List parameters in a specific namespace.

rosparam list /double

/double_param

Get the value of a parameter.

rosparam get /list_param

{5, 124.1, -20, some_string}

2 Functions — Alphabetical List

2-198

Delete a parameter. List the parameters to verify it was deleted.

rosparam delete /double_param
rosparam list

/list_param
/string_param

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_21754 with NodeURI http://bat5823win64:54840/
Shutting down ROS master on http://bat5823win64:54836/.

Create Parameter Tree Object and View Parameters

Connect to the ROS network. ROS parameters should already be available on the ROS
master.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_82870 with NodeURI http://192.168.154.1:58120/

Create a ParameterTree object using rosparam.

ptree = rosparam;

List the available parameters on the ROS master.

ptree.AvailableParameters

ans =

 33×1 cell array

 '/bumper2pointcloud/pointcloud_radius'
 '/camera/imager_rate'
 '/camera/rgb/image_raw/compressed/format'
 '/camera/rgb/image_raw/compressed/jpeg_quality'
 '/camera/rgb/image_raw/compressed/png_level'
 '/cmd_vel_mux/yaml_cfg_file'
 '/depthimage_to_laserscan/output_frame_id'

 rosparam

2-199

 '/depthimage_to_laserscan/range_max'
 '/depthimage_to_laserscan/range_min'
 '/depthimage_to_laserscan/scan_height'
 '/depthimage_to_laserscan/scan_time'
 '/gazebo/auto_disable_bodies'
 '/gazebo/cfm'
 '/gazebo/contact_max_correcting_vel'
 '/gazebo/contact_surface_layer'
 '/gazebo/erp'
 '/gazebo/gravity_x'
 '/gazebo/gravity_y'
 '/gazebo/gravity_z'
 '/gazebo/max_contacts'
 '/gazebo/max_update_rate'
 '/gazebo/sor_pgs_iters'
 '/gazebo/sor_pgs_precon_iters'
 '/gazebo/sor_pgs_rms_error_tol'
 '/gazebo/sor_pgs_w'
 '/gazebo/time_step'
 '/robot_description'
 '/robot_state_publisher/publish_frequency'
 '/rosdistro'
 '/roslaunch/uris/host_192_168_154_131__41131'
 '/rosversion'
 '/run_id'
 '/use_sim_time'

Shut down the ROS network.
rosshutdown

Shutting down global node /matlab_global_node_82870 with NodeURI http://192.168.154.1:58120/

Set A Dictionary Of Parameter Values

Use structures to specify a dictionary of ROS parameters under a specific namespace.

Connect to a ROS network.
rosinit

Initializing ROS master on http://bat5823win64:54437/.
Initializing global node /matlab_global_node_95144 with NodeURI http://bat5823win64:54441/

2 Functions — Alphabetical List

2-200

Create a dictionary of parameters values. This dictionary contains the information
relevant to an image. Display the structure to verify values.

image = imread('peppers.png');

pval.ImageWidth = size(image,1);
pval.ImageHeight = size(image,2);
pval.ImageTitle = 'peppers.png';
disp(pval)

 ImageWidth: 384
 ImageHeight: 512
 ImageTitle: 'peppers.png'

Set the dictionary of values using the desired namespace.

rosparam('set','ImageParam',pval)

Get the parameters using the namespace. Verify the values.

pval2 = rosparam('get','ImageParam')

pval2 =

 struct with fields:

 ImageHeight: 512
 ImageTitle: 'peppers.png'
 ImageWidth: 384

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_95144 with NodeURI http://bat5823win64:54441/
Shutting down ROS master on http://bat5823win64:54437/.

Input Arguments
namespace — ROS parameter namespace
character vector

 rosparam

2-201

ROS parameter namespace, specified as a character vector. All parameter names
starting with this character vector are listed when calling
rosparam('list',namespace).

pname — ROS parameter name
character vector

ROS parameter name, specified as a character vector.

pval — ROS parameter value or dictionary of values
int32 | logical | double | character vector | cell array | structure

ROS parameter value or dictionary of values, specified as a supported data type.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed:

• 32-bit integers — int32
• booleans — logical
• doubles — double
• strings — character vector char
• lists — cell array
• dictionaries — structure

Output Arguments
list — Parameter list
cell array of character vectors

Parameter list, returned as a cell array of character vectors. This is a list of all
parameters available on the ROS master.

ptree — Parameter tree
ParameterTree object handle

Parameter tree, returned as a ParameterTree object handle. Use this object to reference
parameter information, for example, ptree.AvailableFrames.

2 Functions — Alphabetical List

2-202

pvalOut — ROS parameter value or dictionary of values
int32 | logical | double | character vector | cell array | structure

ROS parameter value, specified as a supported MATLAB data type. When specifying the
namespace input argument, pvalOut is returned as a structure of parameter value
under the given namespace.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.
ROS Data Type MATLAB Data Type
32-bit integer int32
boolean logical
double double
string character vector (char)
list cell array (cell)
dictionary structure (struct)

Limitations
• Unsupported Data Types: Base64-encoded binary data and iso8601 data from ROS

are not supported.
• Simplified Commands: When using the simplified command rosparam set

pname pval, the parameter value is interpreted as:

• logical — If pval is 'true' or 'false'
• int32 — If pval is an integer, for example, 5
• double — If pval is a fractional number, for example, 1.256
• character vector — If pval is any other value

See Also
Functions
del | get | has | search | set

 rosparam

2-203

Using Objects
ParameterTree

Introduced in R2015a

2 Functions — Alphabetical List

2-204

rosservice
Retrieve information about services in ROS network

Syntax
rosservice list
rosservice info svcname
rosservice type svcname
rosservice uri svcname

svclist = rosservice('list')
svcinfo = rosservice('info',svcname)
svctype = rosservice('type',svcname)
svcuri = rosservice('uri',svcname)

Description
rosservice list returns a list of service names for all of the active service servers on
the ROS network.

rosservice info svcname returns information about the specified service, svcname.

rosservice type svcname returns the service type.

rosservice uri svcname returns the URI of the service.

svclist = rosservice('list') returns a list of service names for all of the active
service servers on the ROS network. svclist contains a cell array of service names.

svcinfo = rosservice('info',svcname) returns a structure of information,
svcinfo, about the service, svcname.

svctype = rosservice('type',svcname) returns the service type of the service as a
character vector.

 rosservice

2-205

svcuri = rosservice('uri',svcname) returns the URI of the service as a character
vector.

Examples

View List of ROS Services

Connect to the ROS network. Specify the IP address of your specific network.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_00003 with NodeURI http://192.168.154.1:56056/

List the services available on the ROS master.

rosservice list

/camera/rgb/image_raw/compressed/set_parameters
/camera/set_camera_info
/camera/set_parameters
/gazebo/apply_body_wrench
/gazebo/apply_joint_effort
/gazebo/clear_body_wrenches
/gazebo/clear_joint_forces
/gazebo/delete_model
/gazebo/get_joint_properties
/gazebo/get_link_properties
/gazebo/get_link_state
/gazebo/get_loggers
/gazebo/get_model_properties
/gazebo/get_model_state
/gazebo/get_physics_properties
/gazebo/get_world_properties
/gazebo/pause_physics
/gazebo/reset_simulation
/gazebo/reset_world
/gazebo/set_joint_properties
/gazebo/set_link_properties
/gazebo/set_link_state
/gazebo/set_logger_level
/gazebo/set_model_configuration
/gazebo/set_model_state

2 Functions — Alphabetical List

2-206

/gazebo/set_parameters
/gazebo/set_physics_properties
/gazebo/spawn_gazebo_model
/gazebo/spawn_sdf_model
/gazebo/spawn_urdf_model
/gazebo/unpause_physics
/laserscan_nodelet_manager/get_loggers
/laserscan_nodelet_manager/list
/laserscan_nodelet_manager/load_nodelet
/laserscan_nodelet_manager/set_logger_level
/laserscan_nodelet_manager/unload_nodelet
/mobile_base_nodelet_manager/get_loggers
/mobile_base_nodelet_manager/list
/mobile_base_nodelet_manager/load_nodelet
/mobile_base_nodelet_manager/set_logger_level
/mobile_base_nodelet_manager/unload_nodelet
/robot_state_publisher/get_loggers
/robot_state_publisher/set_logger_level
/rosout/get_loggers
/rosout/set_logger_level

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_00003 with NodeURI http://192.168.154.1:56056/

Get Information, Service Type, and URI for ROS Service

Connect to the ROS network. Specify the IP address of your specific network.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_76389 with NodeURI http://192.168.154.1:55924/

Get information on the gazebo/pause_physics service.

svcinfo = rosservice('info','gazebo/pause_physics')

svcinfo =

 struct with fields:

 rosservice

2-207

 Node: '/gazebo'
 URI: 'rosrpc://192.168.154.131:33260'
 Type: 'std_srvs/Empty'
 Args: {}

Get the service type.

svctype = rosservice('type','gazebo/pause_physics')

svctype =

 'std_srvs/Empty'

Get the service URI.

svcuri = rosservice('uri','gazebo/pause_physics')

svcuri =

 'rosrpc://192.168.154.131:33260'

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_76389 with NodeURI http://192.168.154.1:55924/

Input Arguments
svcname — Name of service
character vector

Name of service, specified as a character vector. The service name must match its name
in the ROS network.

2 Functions — Alphabetical List

2-208

Output Arguments
svcinfo — Information about a ROS service
character vector

Information about a ROS service, returned as a character vector.

svclist — List of available ROS services
cell array of character vectors

List of available ROS services, returned as a cell array of character vectors.

svctype — Type of ROS service
character vector

Type of ROS service, returned as a character vector.

svcuri — URI for accessing service
character vector

URI for accessing service, returned as a character vector.

See Also
rosinit | rosparam

Introduced in R2015a

 rosservice

2-209

rosshutdown
Shut down ROS system

Syntax
rosshutdown

Description
rosshutdown shuts down the global node and, if it is running, the ROS master. When
you finish working with the ROS network, use rosshutdown to shut down the global
ROS entities created by rosinit. If the global node and ROS master are not running,
this function has no effect. After calling rosshutdown, any ROS entities that depend on
the global node, for example, subscribers created with rossubscriber, are deleted and
become unstable.

Examples

Start ROS Core and Global Node

rosinit

Initializing ROS master on http://bat5823win64:54548/.
Initializing global node /matlab_global_node_20607 with NodeURI http://bat5823win64:54552/

When you are finished, shut down the ROS network.

rosshutdown

2 Functions — Alphabetical List

2-210

Shutting down global node /matlab_global_node_20607 with NodeURI http://bat5823win64:54552/
Shutting down ROS master on http://bat5823win64:54548/.

See Also
rosinit

Introduced in R2015a

 rosshutdown

2-211

rostopic
Retrieve information about ROS topics

Syntax
rostopic list
rostopic echo topicname
rostopic info topicname
rostopic type topicname

topiclist = rostopic('list')
msg = rostopic('echo', topicname)
topicinfo = rostopic('info', topicname)
msgtype = rostopic('type', topicname)

Description
rostopic list returns a list of ROS topics from the ROS master.

rostopic echo topicname returns the messages being sent from the ROS master
about a specific topic, topicname. To stop returning messages, press Ctrl+C.

rostopic info topicname returns the message type, publishers, and subscribers for
a specific topic, topicname.

rostopic type topicname returns the message type for a specific topic.

topiclist = rostopic('list') returns a cell array containing the ROS topics from
the ROS master. If you do not define the output argument, the list is returned in the
MATLAB Command Window.

msg = rostopic('echo', topicname) returns the messages being sent from the
ROS master about a specific topic, topicname. To stop returning messages, press Ctrl
+C. If the output argument is defined, then rostopic returns the first message that
arrives on that topic.

2 Functions — Alphabetical List

2-212

topicinfo = rostopic('info', topicname) returns a structure containing the
message type, publishers, and subscribers for a specific topic, topicname.

msgtype = rostopic('type', topicname) returns a character vector containing
the message type for the specified topic, topicname.

Examples

Get List of ROS Topics

Connect to ROS network. Specify the IP address of the ROS device.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_23844 with NodeURI http://192.168.154.1:56317/

List the ROS topic available on the ROS master.

rostopic list

/camera/depth/camera_info
/camera/depth/image_raw
/camera/depth/points
/camera/parameter_descriptions
/camera/parameter_updates
/camera/rgb/camera_info
/camera/rgb/image_raw
/camera/rgb/image_raw/compressed
/camera/rgb/image_raw/compressed/parameter_descriptions
/camera/rgb/image_raw/compressed/parameter_updates
/clock
/cmd_vel_mux/active
/cmd_vel_mux/input/navi
/cmd_vel_mux/input/safety_controller
/cmd_vel_mux/input/teleop
/cmd_vel_mux/parameter_descriptions
/cmd_vel_mux/parameter_updates
/depthimage_to_laserscan/parameter_descriptions
/depthimage_to_laserscan/parameter_updates
/gazebo/link_states
/gazebo/model_states
/gazebo/parameter_descriptions

 rostopic

2-213

/gazebo/parameter_updates
/gazebo/set_link_state
/gazebo/set_model_state
/joint_states
/laserscan_nodelet_manager/bond
/mobile_base/commands/motor_power
/mobile_base/commands/reset_odometry
/mobile_base/commands/velocity
/mobile_base/events/bumper
/mobile_base/events/cliff
/mobile_base/sensors/bumper_pointcloud
/mobile_base/sensors/core
/mobile_base/sensors/imu_data
/mobile_base_nodelet_manager/bond
/odom
/rosout
/rosout_agg
/scan
/tf

Get ROS Topic Info

Connect to ROS network. Specify the IP address of the ROS device.
rosinit('192.168.154.131')

Initializing global node /matlab_global_node_28473 with NodeURI http://192.168.154.1:57251/

Show info on a specific ROS topic.
rostopic info camera/depth/points

Type: sensor_msgs/PointCloud2

Publishers:
* /gazebo http://192.168.154.131:46957/

Subscribers:

Get ROS Topic Message Type

Connect to ROS network. Specify the IP address of the ROS device.

2 Functions — Alphabetical List

2-214

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_70141 with NodeURI http://192.168.154.1:58138/

Get message type for a specific topic. Create a message from the message type to publish
to the topic.

msgtype = rostopic('type','camera/depth/points');
msg = rosmessage(msgtype);

Input Arguments
topicname — ROS topic name
character vector

ROS topic name, specified as a character vector. The topic name must match one of the
topics thatrostopic('list') outputs.

Output Arguments
topiclist — List of topics from the ROS master
cell array of character vectors

List of topics from ROS master, returned as a cell array of character vectors.

msg — ROS message for a given topic
object handle

ROS message for a given topic, returned as an object handle.

topicinfo — Information about a given ROS topic
structure

Information about a ROS topic, returned as a structure. topicinfo included the
message type, publishers, and subscribers associated with that topic.

msgtype — Message type for a ROS topic
character vector

Message type for a ROS topic, returned as a character vector.

 rostopic

2-215

Introduced in R2015a

2 Functions — Alphabetical List

2-216

rostype
Access available ROS message types

Syntax
rostype

Description
rostype creates a blank message of a certain type by browsing the list of available
message types. You can use tab completion and do not have to rely on typing error-free
message type character vectors. By typing rostype.partialname, and pressing Tab, a
list of matching message types appears in a list. By setting the message type equal to a
variable, you can create a character vector of that message type. Alternatively, you can
create the message by supplying the message type directly into rosmessage as an input
argument.

Examples

Create ROS Message Type and ROS Message

Create Message Type String

t = rostype.std_msgs_String

t =

 'std_msgs/String'

Create ROS Message from ROS Type

msg = rosmessage(rostype.std_msgs_String)

 rostype

2-217

msg =

 ROS String message with properties:

 MessageType: 'std_msgs/String'
 Data: ''

 Use showdetails to show the contents of the message

• “Built-In Message Support”
• “Work with Basic ROS Messages”

See Also
rosmessage | rostopic

Topics
“Built-In Message Support”
“Work with Basic ROS Messages”

Introduced in R2015a

2 Functions — Alphabetical List

2-218

rotm2axang
Convert rotation matrix to axis-angle rotation

Syntax
axang = rotm2axang(rotm)

Description
axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation
matrix, rotm, to the corresponding axis-angle representation, axang. The input rotation
matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
axang = rotm2axang(rotm)

axang =

 1.0000 0 0 3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

 rotm2axang

2-219

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and must be orthonormal. The input rotation matrix
must be in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2rotm

Introduced in R2015a

2 Functions — Alphabetical List

2-220

rotm2eul
Convert rotation matrix to Euler angles

Syntax
eul = rotm2eul(rotm)
eul = rotm2eul(rotm,sequence)

Description
eul = rotm2eul(rotm) converts a rotation matrix, rotm, to the corresponding Euler
angles, eul. The input rotation matrix must be in the premultiply form for rotations. The
default order for Euler angle rotations is 'ZYX'.

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The
Euler angles are specified in the axis rotation sequence, sequence. The default order for
Euler angle rotations is 'ZYX'.

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYX = rotm2eul(rotm)

eulZYX =

 0 1.5708 0

 rotm2eul

2-221

Convert Rotation Matrix to Euler Angles Using ZYZ Axis Order

rotm = [0 0 1; 0 -1 0; -1 0 0];
eulZYZ = rotm2eul(rotm,'ZYZ')

eulZYZ =

 -3.1416 -1.5708 -3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ' | 'XYZ'

Axis rotation sequence for the Euler angles, specified as one of these character vectors:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.
• 'XYZ' – The order of rotation angles is x-axis, y-axis, z-axis.

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

2 Functions — Alphabetical List

2-222

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2rotm

Introduced in R2015a

 rotm2eul

2-223

rotm2quat
Convert rotation matrix to quaternion

Syntax
quat = rotm2quat(rotm)

Description
quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit
quaternion representation, quat. The input rotation matrix must be in the premultiply
form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 0 1; 0 1 0; -1 0 0];
quat = rotm2quat(rotm)

quat =

 0.7071 0 0.7071 0

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

2 Functions — Alphabetical List

2-224

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2rotm

Introduced in R2015a

 rotm2quat

2-225

rotm2tform
Convert rotation matrix to homogeneous transformation

Syntax
tform = rotm2tform(rotm)

Description
tform = rotm2tform(rotm) converts the rotation matrix, rotm, into a homogeneous
transformation matrix, tform. The input rotation matrix must be in the premultiply
form for rotations. When using the transformation matrix, premultiply it with the
coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
tform = rotm2tform(rotm)

tform =

 1 0 0 0
 0 -1 0 0
 0 0 -1 0

2 Functions — Alphabetical List

2-226

 0 0 0 1

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 rotm2tform

2-227

See Also
tform2rotm

Introduced in R2015a

2 Functions — Alphabetical List

2-228

runCore
Start ROS core

Syntax
runCore(device)

Description
runCore(device) starts the ROS core on the connected device. The ROS master uses a
default port number of 11311.

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run
ROS nodes to communicate via a ROS network. You can run and stop a ROS core or node
and check their status using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'
 Username: 'user'

 runCore

2-229

 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core and check if it is running.
runCore(d)
running = isCoreRunning(d)

running =

 logical

 1

Stop the ROS core and confirm that it is no longer running.
stopCore(d)
running = isCoreRunning(d)

running =

 logical

 0

• “Generate a Standalone ROS Node from Simulink®”

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

See Also
isCoreRunning | rosdevice | stopCore

2 Functions — Alphabetical List

2-230

Topics
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

 runCore

2-231

runNode
Start ROS node

Syntax
runNode(device,modelName)
runNode(device,modelName,masterURI)
runNode(device,modelName,masterURI,nodeHost)

Description
runNode(device,modelName) starts the ROS node associated with the deployed
Simulink model named modelName. The ROS node must be deployed in the Catkin
workspace specified by the CatkinWorkspace property of the input rosdevice object,
device. By default, the node connects to the ROS master that MATLAB is connected to
with the device.DeviceAddress property.

runNode(device,modelName,masterURI) connects to the specified master URI.

runNode(device,modelName,masterURI,nodeHost) connects to the specified
master URI and node host. The node advertises its address as the hostname or IP
address given in nodeHost.

Examples

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. First, run a ROS core so that
ROS nodes can communicate via a ROS network. You can run and stop a ROS core or
node and check their status using a rosdevice object.

2 Functions — Alphabetical List

2-232

Create a connection to a ROS device. Specify the address, user name and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/hydro';
d.CatkinWorkspace = '~/catkin_ws_test'

d =

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.
Initializing global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Run a ROS node. specifying the node name. Check if the node is running.

 runNode

2-233

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

runNode(d,'robotcontroller')
running = isNodeRunning(d,'robotcontroller')

running =

 logical

 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

stopNode(d,'robotcontroller')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Run Multiple ROS Nodes

Run multiple ROS nodes on a connected ROS device. ROS nodes can be generated using
Simulink® models to perform different tasks on the ROS network. These nodes are then
deployed on a ROS device and can be run independently of Simulink.

This example uses two different Simulink models that have been deployed as ROS nodes.
See Generate a standalone ROS node from Simulink®). and follow the instructions to
generate and deploy a ROS node. The 'robotcontroller' node sends velocity
commands to a robot to navigate it to a given point. The 'robotcontroller2' node
uses the same model, but doubles the linear velocity to drive the robot faster.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

 rosdevice with properties:

2 Functions — Alphabetical List

2-234

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This ROS core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

Initializing global node /matlab_global_node_68749 with NodeURI http://192.168.154.1:64205/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Start up the Robot Simulator using ExampleHelperSimulinkRobotROS. This simulator
automatically connects to the ROS master on the ROS device. You will use this simulator
to run a ROS node and control the robot.

sim = ExampleHelperSimulinkRobotROS;

 runNode

2-235

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

Run a ROS node, specifying the node name. The 'robotcontroller' node commands
the robot to a specific location ([-10 10]). Wait to see the robot drive.

runNode(d,'robotcontroller')
pause(10)

2 Functions — Alphabetical List

2-236

Reset the Robot Simulator to reset the robot position. Alternatively, click Reset
Simulation. Because the node is still running, the robot continues back to the specific
location. To stop sending commands, stop the node.

resetSimulation(sim.Simulator)
pause(5)
stopNode(d,'robotcontroller')

 runNode

2-237

Run the 'robotcontroller2' node. This model drives the robot with twice the linear
velocity. Reset the robot position. Wait to see the robot drive.

runNode(d,'robotcontroller2')
resetSimulation(sim.Simulator)
pause(10)

2 Functions — Alphabetical List

2-238

Close the simulator. Stop the ROS node. Disconnect from the ROS network and stop the
ROS core.

close
stopNode(d,'robotcontroller2')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_68749 with NodeURI http://192.168.154.1:64205/

• “Connect to a ROS Network”
• “Generate a Standalone ROS Node from Simulink®”

 runNode

2-239

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

modelName — Name of the deployed Simulink model
character vector

Name of the deployed Simulink model, specified as a character vector. If the model name
is not valid, the function returns an error.

masterURI — URI of the ROS master
character vector

URI of the ROS master, specified as a character vector. On start up, the node connects to
the ROS master with the given URI.

nodeHost — Host name for the node
character vector

Host name for the node, specified as a character vector. The node uses this host name to
advertise itself on the ROS network for others to connect to it.

See Also
isNodeRunning | rosdevice | stopNode

Topics
“Connect to a ROS Network”
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

2 Functions — Alphabetical List

2-240

scatter3
Display point cloud in scatter plot

Syntax
scatter3(pcloud)
scatter3(pcloud,Name,Value)
h = scatter3(___)

Description
scatter3(pcloud) plots the input pcloud point cloud as a 3-D scatter plot in the
current axes handle. If the data contains RGB information for each point, the scatter plot
is colored accordingly.

scatter3(pcloud,Name,Value) provides additional options specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN)

h = scatter3(___) returns the scatter series object, using any of the arguments from
previous syntaxes. Use h to modify properties of the scatter series after it is created.

When plotting ROS point cloud messages, MATLAB follows the standard ROS
convention for axis orientation. This convention states that positive x is forward,
positive y is left, and positive z is up. However, if cameras are used, a second frame is
defined with an “_optical” suffix which changes the orientation of the axis. In this case,
positive z is forward, positive x is right, and positive y is down. MATLAB looks for the
“_optical” suffix and will adjust the axis orientation of the scatter plot accordingly. For
more information, see Axis Orientation on the ROS Wiki.

Examples

 scatter3

2-241

http://www.ros.org/reps/rep-0103.html#axis-orientation

Get and Plot a 3-D Point Cloud

Connect to a ROS network. Subscribe to a point cloud message topic.

rosinit('192.168.154.131')
sub = rossubscriber('/camera/depth/points');
pause(1)

Initializing global node /matlab_global_node_47682 with NodeURI http://192.168.154.1:60789/

Get the latest point cloud message. Plot the point cloud.

pcloud = sub.LatestMessage;
scatter3(pcloud)

2 Functions — Alphabetical List

2-242

Plot all points as black dots.

scatter3(sub.LatestMessage,'MarkerEdgeColor',[0 0 0]);

Input Arguments
pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

 scatter3

2-243

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MarkerEdgeColor',[1 0 0]

MarkerEdgeColor — Marker outline color
'flat' (default) | 'none' | RGB triplet | 'r' | 'g' | 'b' | ...

Marker outline color, specified 'flat', an RGB triplet, or one of the color options listed
in the table. The default value of 'flat' uses colors from the CData property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector
whose elements specify the intensities of the red, green, and blue components of the
color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and
short color name options and the equivalent RGB triplet values.
Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]
'none' No color Not applicable

Example: [0.5 0.5 0.5]
Example: 'blue'

Parent — Parent of axes
axes object

2 Functions — Alphabetical List

2-244

Parent of axes, specified as the comma-separated pair consisting of 'Parent and an axes
object in which to draw the point cloud. By default, the point cloud is plotted in the active
axes.

Outputs

h — Scatter series object
scalar

Scatter series object, returned as a scalar. This value is a unique identifier, which you
can use to query and modify the properties of the scatter object after it is created.

See Also
readRGB | readXYZ

Introduced in R2015a

 scatter3

2-245

search
Search ROS network for parameter names

Syntax
pnames = search(ptree,searchstr)
[pnames,pvalues] = search(ptree,searchstr)

Description
pnames = search(ptree,searchstr) searches within the parameter tree ptree and
returns the parameter names that contain the character vector searchstr.

[pnames,pvalues] = search(ptree,searchstr) also returns the parameter
values.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed:

• 32-bit integers — int32
• booleans — logical
• doubles — double
• strings — character vector char
• lists — cell array
• dictionaries — structure

Examples

Search for ROS Parameter Names

Connect to ROS network. Specify the IP address of the ROS master.

2 Functions — Alphabetical List

2-246

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_11803 with NodeURI http://192.168.154.1:58339/

Create a parameter tree.

ptree = rosparam;

Search for parameter names that contain 'gravity'.

[pnames,pvalues] = search(ptree,'gravity')

pnames =

 1×3 cell array

 '/gazebo/gravity_x' '/gazebo/gravity_y' '/gazebo/gravity_z'

pvalues =

 3×1 cell array

 [0]
 [0]
 [-9.8000]

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

searchstr — ROS parameter search string
character vector

ROS parameter search string specified as a character vector. search returns all
parameters that contain this character vector.

 search

2-247

Output Arguments
pnames — Parameter values
cell array of character vectors

Parameter names, returned as a cell array of character vectors. These character vectors
match the parameter names in the ROS master that contain the search character vector.

pvalues — Parameter values
cell array

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed:

• 32-bit integers — int32
• booleans — logical
• doubles — double
• strings — character vector char
• lists — cell array
• dictionaries — structure

Base64–encoded binary data and iso8601 data from ROS are not supported.

Limitations
Base64–encoded binary data and iso8601 data from ROS are not supported.

See Also
get | rosparam

Introduced in R2015a

2 Functions — Alphabetical List

2-248

seconds
Returns seconds of a time or duration

Syntax
secs = seconds(time)
secs = seconds(duration)

Description
secs = seconds(time) returns the scalar number, secs, in seconds that represents
the same value as the time object, time.

secs = seconds(duration) returns the scalar number, secs, in seconds that
represents the same value as the duration object, duration.

Examples

Get Seconds From A Time Object

Use the seconds function to get the total seconds of a Time object from its Secs and
Nsecs properties.

Create a Time object.

time = rostime(1,860000000)

time =

 ROS Time with properties:

 Sec: 1
 Nsec: 860000000

 seconds

2-249

Get the total seconds from the time object.

secs = seconds(time)

secs =

 1.8600

Input Arguments
time — Current ROS or system time
Time object handle

ROS or system time, specified as a Time object handle. Create a Time object using
rostime.

duration — Duration
ROS Duration object

Duration, specified as a ROS Duration object with Sec and Nsec properties. Create a
Duration object using rosduration

Output Arguments
secs — Total time
scalar in seconds

Total time of the Time or Duration object, returned as a scalar in seconds.

See Also
rosduration | rostime

Introduced in R2016a

2 Functions — Alphabetical List

2-250

select
Select subset of messages in rosbag

Syntax
bagsel = select(bag)
bagsel = select(bag,Name,Value)

Description
bagsel = select(bag) returns an object, bagsel, that contains all of the messages in
the BagSelection object, bag

This function does not change the contents of the original BagSelection object. It
returns a new object that contains the specified message selection.

bagsel = select(bag,Name,Value) provides additional options specified by one or
more Name,Value pair arguments. Namemust appear inside single quotes (''). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Examples

Create Copy of rosbag

Retreive the rosbag. Specify the file path.

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')),...
 'data','ex_multiple_topics.bag');
bag = rosbag(filepath);

Use select with no selection criteria to create a copy of the rosbag.

 select

2-251

bagCopy = select(bag);

Select Subset of Messages In rosbag

Retreive the rosbag. Specify the file path.

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')),...
 'data','ex_multiple_topics.bag');
bag = rosbag(filepath);

Select all messages within the first second of the rosbag.

bag = select(bag,'Time',[bag.StartTime,bag.StartTime + 1]);

Input Arguments
bag — Message of a rosbag
BagSelection object

All the messages contained within a rosbag, specified as a BagSelection object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MessageType','/geometry_msgs/Point'

MessageType — ROS message type
character vector | cell array

ROS message type, specified as a character vector or cell array. Multiple message types
can be specified with a cell array of character vectors.

Time — Start and end times
n-by-2 matrix

2 Functions — Alphabetical List

2-252

Start and end times of the rosbag selection, specified as an n-by-2 vector.

Topic — ROS topic name
character vector | cell array

ROS topic name, specified as a character vector or cell array. Multiple topic names can be
specified with a cell array of character vectors.

Output Arguments
bagsel — Copy or subset of rosbag messages
BagSelection object

Copy or subset of rosbag messages, returned as a BagSelection object

See Also
readMessages | rosbag | timeseries

Introduced in R2015a

 select

2-253

send
Publish ROS message to topic

Syntax
send(pub,msg)

Description
send(pub,msg) publishes a message to the topic specified by the publisher, pub. This
message can be received by all subscribers in the ROS network that are subscribed to the
topic specified by pub

Examples

Create, Send, And Receive ROS Messages

Set up a publisher and subscriber to send and receive a message on a ROS network.

Connect to a ROS network.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_10876 with NodeURI http://AH-SRADFORD:65135/

Create a publisher with a specific topic and message type. You can also return a default
message to send using this publisher.

[pub,msg] = rospublisher('position','geometry_msgs/Point');

Modify the message before sending over the network.

2 Functions — Alphabetical List

2-254

msg.X = 1;
msg.Y = 2;
send(pub,msg);

Create a subscriber and wait for the latest message. Verify the message is the one you
sent.

sub = rossubscriber('position')
pause(1);
sub.LatestMessage

sub =

 Subscriber with properties:

 TopicName: '/position'
 MessageType: 'geometry_msgs/Point'
 LatestMessage: [0×1 Point]
 BufferSize: 1
 NewMessageFcn: []

ans =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 1
 Y: 2
 Z: 0

 Use showdetails to show the contents of the message

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_10876 with NodeURI http://AH-SRADFORD:65135/
Shutting down ROS master on http://AH-SRADFORD:11311/.

• “Exchange Data with ROS Publishers and Subscribers”

 send

2-255

Input Arguments
pub — ROS publisher
Publisher object handle

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

msg — ROS message
Message object handle

ROS message, specified as a Message object handle.

See Also
receive | rosmessage | rospublisher | rossubscriber | rostopic

Topics
“Exchange Data with ROS Publishers and Subscribers”

Introduced in R2015a

2 Functions — Alphabetical List

2-256

sendGoal
Send goal message to action server

Syntax
sendGoal(client,goalMsg)

Description
sendGoal(client,goalMsg) sends a goal message to the action server. The specified
action client tracks this goal. The function does not wait for the goal to be executed and
returns immediately.

If the ActionFcn, FeedbackFcn, and ResultFcn callbacks of the client are defined,
they are called when the goal is processing on the action server. All callbacks associated
with a previously sent goal are disabled, but the previous goal is not canceled.

Examples

Create And Send A ROS Action Goal Message

This example shows how to create goal messages and send to an already active ROS
action server on a ROS network. You must create a ROS action client to connect to this
server.

Create a ROS action client and get a goal message. The actClient object connects to the
ROS action server. goalMsg is a valid goal message. Update the message parameters
with your specific goal.

[actClient, goalMsg] = rosactionclient('/turtlebot_move');
disp(goalMsg)

 ROS TurtlebotMoveGoal message with properties:

 sendGoal

2-257

 MessageType: 'turtlebot_actions/TurtlebotMoveGoal'
 TurnDistance: 0
 ForwardDistance: 0

 Use showdetails to show the contents of the message

You can also create a message using rosmessage and the action client object. This
mesasge sends linear and angular velocity commands to a Turtlebot® robot.

goalMsg = rosmessage(actClient);
disp(goalMsg)

 ROS TurtlebotMoveGoal message with properties:

 MessageType: 'turtlebot_actions/TurtlebotMoveGoal'
 TurnDistance: 0
 ForwardDistance: 0

 Use showdetails to show the contents of the message

Modify the goal message parameters and send the goal to the action server.

goalMsg.ForwardDistance = 2;
sendGoal(actClient,goalMsg)

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

2 Functions — Alphabetical List

2-258

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

 sendGoal

2-259

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action
client enables you to track a single goal at a time.

goalMsg — ROS action goal message
Message object handle

ROS action goal message, specified as a Message object handle. Update this message
with your goal details and send it to the ROS action client using sendGoal or
sendGoalAndWait.

See Also
cancelGoal | rosaction | rosactionclient | sendGoalAndWait

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

Introduced in R2016b

2 Functions — Alphabetical List

2-260

sendGoalAndWait
Send goal message and wait for result

Syntax
resultMsg = sendGoalAndWait(client,goalMsg)
resultMsg = sendGoalAndWait(client,goalMsg,timeout)
[resultMsg,state,status] = sendGoalAndWait(___)

Description
resultMsg = sendGoalAndWait(client,goalMsg) sends a goal message using the
specified action client to the action server and waits until the action server returns a
result message. Press Ctrl+C to abort the wait.

resultMsg = sendGoalAndWait(client,goalMsg,timeout) specifies a timeout
period in seconds. If the server does not return the result in the timeout period, the
function displays an error.

[resultMsg,state,status] = sendGoalAndWait(___) returns the final goal state
and associated status text using any of the previous syntaxes. state contains
information about where the goal execution succeeded or not.

Examples

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

 sendGoalAndWait

2-261

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

2 Functions — Alphabetical List

2-262

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action
client enables you to track a single goal at a time.

goalMsg — ROS action goal message
Message object handle

ROS action goal message, specified as a Message object handle. Update this message
with your goal details and send it to the ROS action client using sendGoal or
sendGoalAndWait.

timeout — Timeout period
scalar in seconds

Timeout period for receiving a result message, specified as a scalar in seconds. If the
client does not receive a new result message in that time period, an error is displayed.

Output Arguments
resultMsg — Result message
ROS Message object

Result message, returned as a ROS Message object. The result message contains the
result data sent by the action server. This data depends on the action type.

state — Final goal state
character vector

 sendGoalAndWait

2-263

Final goal state, returned as one of the following:

• 'pending' — Goal was received, but has not yet been accepted or rejected.
• 'active' — Goal was accepted and is running on the server.
• 'succeeded' — Goal executed successfully.
• 'preempted' — An action client canceled the goal before it finished executing.
• 'aborted' — The goal was aborted before it finished executing. The action server

typically aborts a goal.
• 'rejected' — The goal was not accepted after being in the 'pending' state. The

action server typically triggers this status.
• 'recalled' — A client canceled the goal while it was in the 'pending' state.
• 'lost' — An internal error occurred in the action client.

status — Status text
character vector

Status text that the server associated with the final goal state, returned as a character
vector.

See Also
cancelGoal | rosaction | rosactionclient | sendGoal

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

Introduced in R2016b

2 Functions — Alphabetical List

2-264

sendTransform
Send transformation to ROS network

Syntax
sendTransform(tftree,tf)

Description
sendTransform(tftree,tf) broadcasts a transform or array of transforms, tf, to the
ROS network as a TransformationStamped ROS message.

Examples

Send A Transformation to the ROS Network

This example shows how to create a transformation and send it over the ROS network.

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '172.28.194.91';
rosinit(ipaddress)
tftree = rostf;
pause(2);

Initializing global node /matlab_global_node_61809 with NodeURI http://172.28.194.90:55314/

Verify the transformation you want does not exist. canTransform returns false if the
transformation is not immediately available.

canTransform(tftree,'new_frame','base_link')

ans =

 sendTransform

2-265

 0

Create a TransformStamped message. Populate with the transformation information.

tform = rosmessage('geometry_msgs/TransformStamped')
tform.ChildFrameId = 'new_frame';
tform.Header.FrameId = 'base_link';
tform.Transform.Translation.X = 0.5;
tform.Transform.Rotation.Z = 0.75;

tform =

 ROS TransformStamped message with properties:

 MessageType: 'geometry_msgs/TransformStamped'
 Header: [1×1 Header]
 ChildFrameId: ''
 Transform: [1×1 Transform]

 Use showdetails to show the contents of the message

Send the transformation over the ROS network.

sendTransform(tftree,tform)

Check if the transformation is now on the ROS network

canTransform(tftree,'new_frame','base_link')

ans =

 1

Shut down the ROS network.

rosshutdown

2 Functions — Alphabetical List

2-266

Shutting down global node /matlab_global_node_61809 with NodeURI http://172.28.194.90:55314/

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

tf — Transformations between coordinate frames
TransformStamped object handle | array of object handles

Transformations between coordinate frames, returned as a TransformStamped object
handle or as an array of object handles. Transformations are structured as a 3-D
translation (3-element vector) and a 3-D rotation (quaternion).

See Also
getTransform | transform

Introduced in R2015a

 sendTransform

2-267

set
Set value of ROS parameter or add new parameter

Syntax
set(ptree,paramname,pvalue)
set(ptree,namespace,pvalue)

Description
set(ptree,paramname,pvalue) assigns the value pvalue to the parameter with the
name paramname. This parameter is sent to the parameter tree ptree.

set(ptree,namespace,pvalue) assigns multiple values as a dictionary in pvalue
under the specified namespace.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.

• 32-bit integer — int32
• boolean — logical
• double — double
• string — character vector (char)
• list — cell array (cell)
• dictionary — structure (struct)

Examples

Set and Get Parameter Value

Connect to ROS network.

2 Functions — Alphabetical List

2-268

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_68286 with NodeURI http://AH-SRADFORD:60333/

Create ROS parameter tree. Set a double parameter. Get the parameter to verify it was
set.

ptree = rosparam;
set(ptree,'DoubleParam',1.0)
get(ptree,'DoubleParam')

ans =

 1

Shut down ROS network.

rosshutdown

Shutting down global node /matlab_global_node_68286 with NodeURI http://AH-SRADFORD:60333/
Shutting down ROS master on http://AH-SRADFORD:11311/.

Set A Dictionary Of Parameter Values

Use structures to specify a dictionary of ROS parameters under a specific namespace.

Connect to a ROS network.

rosinit

Initializing ROS master on http://bat5823win64:54437/.
Initializing global node /matlab_global_node_95144 with NodeURI http://bat5823win64:54441/

Create a dictionary of parameters values. This dictionary contains the information
relevant to an image. Display the structure to verify values.

image = imread('peppers.png');

pval.ImageWidth = size(image,1);
pval.ImageHeight = size(image,2);

 set

2-269

pval.ImageTitle = 'peppers.png';
disp(pval)

 ImageWidth: 384
 ImageHeight: 512
 ImageTitle: 'peppers.png'

Set the dictionary of values using the desired namespace.

rosparam('set','ImageParam',pval)

Get the parameters using the namespace. Verify the values.

pval2 = rosparam('get','ImageParam')

pval2 =

 struct with fields:

 ImageHeight: 512
 ImageTitle: 'peppers.png'
 ImageWidth: 384

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_95144 with NodeURI http://bat5823win64:54441/
Shutting down ROS master on http://bat5823win64:54437/.

Input Arguments
ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
character vector

2 Functions — Alphabetical List

2-270

ROS parameter name, specified as a character vector. This character vector must match
the parameter name exactly.

pvalue — ROS parameter value or dictionary of values
int32 | logical | double | character vector | cell array | structure

ROS parameter value or dictionary of values, specified as a supported MATLAB data
type.

The following ROS data types are supported as values of parameters. For each ROS data
type, the corresponding MATLAB data type is also listed.
ROS Data Type MATLAB Data Type
32-bit integer int32
boolean logical
double double
string character vector (char)
list cell array (cell)
dictionary structure (struct)

namespace — ROS parameter namespace
character vector

ROS parameter namespace, specified as a character vector. All parameter names
starting with this character vector are listed when calling
rosparam('list',namespace).

Limitations
Base64-encoded binary data and iso8601 data from ROS are not supported.

See Also
get | rosparam

Introduced in R2015a

 set

2-271

showrobotics.VectorFieldHistogram.show
Package: robotics

Display VectorFieldHistogram information in figure window

Syntax
show(vfh)

show(vfh,'Parent',parent)

h = show(___)

Description
show(vfh) shows histograms calculated by the VFH+ algorithm in a figure window. The
figure also includes the parameters of the VectorFieldHistrogram object and range
values from the last step input.

show(vfh,'Parent',parent) sets the specified axes handle, parent, to the axes.

h = show(___) returns the figure object handle created by show using any of the
arguments from the previous syntaxes.

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a VectorFieldHistogram object.

 vfh = robotics.VectorFieldHistogram;

2 Functions — Alphabetical List

2-272

Input laser scan data and target direction.

ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Compute an obstacle-free steering direction.

steeringDir = vfh(ranges,angles,targetDir)

steeringDir =

 -0.8014

Visualize the VectorFieldHistogram computation.

h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)

 showrobotics.VectorFieldHistogram.show

2-273

Input Arguments
vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

parent — Axes properties
handle

Axes properties, specified as a handle.

Output Arguments
h — Axes handles for VFH algorithm display
Axes array

2 Functions — Alphabetical List

2-274

Axes handles for VFH algorithm display, specified as an Axes array. The VFH histogram
and HistogramThresholds are shown in the first axes. The binary histogram, range
sensor readings, target direction, and steering directions are shown in the second axes.

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.step

Introduced in R2015b

 showrobotics.VectorFieldHistogram.show

2-275

showdetails
Display all ROS message contents

Syntax
details = showdetails(msg)

Description
details = showdetails(msg) gets all data contents of message object msg. The
details are stored in details or displayed on the command line.

Examples

Create Message and View Details

Create a message. Populate the message with data using the relevant properties.

msg = rosmessage('geometry_msgs/Point');
msg.X = 1;
msg.Y = 2;
msg.Z = 3;

View the message details.

showdetails(msg)

 X : 1

2 Functions — Alphabetical List

2-276

 Y : 2
 Z : 3

Input Arguments
msg — ROS message
Message object handle

ROS message, specified as a Message object handle.

Output Arguments
details — Details of ROS message
character vector

Details of ROS message, returned as a character vector.

See Also
rosmessage

Introduced in R2015a

 showdetails

2-277

stopCore
Stop ROS core

Syntax
stopCore(device)

Description
stopCore(device) stops the ROS core on the specified rosdevice, device. If multiple
ROS cores are running on the ROS device, the function stops all of them. If no core is
running, the function returns immediately.

Examples

Run ROS Core on ROS Device

Connect to a remote ROS device and start a ROS core. The ROS core is needed to run
ROS nodes to communicate via a ROS network. You can run and stop a ROS core or node
and check their status using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'

2 Functions — Alphabetical List

2-278

 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core and check if it is running.

runCore(d)
running = isCoreRunning(d)

running =

 logical

 1

Stop the ROS core and confirm that it is no longer running.

stopCore(d)
running = isCoreRunning(d)

running =

 logical

 0

• “Generate a Standalone ROS Node from Simulink®”

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

 stopCore

2-279

See Also
isCoreRunning | rosdevice | runCore

Topics
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

2 Functions — Alphabetical List

2-280

statistics
Statistics of past execution periods

Syntax
stats = statistics(rate)

Description
stats = statistics(rate) returns statistics of previous periods of code execution.
stats is a struct with these fields: Periods, NumPeriods, AveragePeriod,
StandardDeviation, and NumOverruns.

Here is a sample execution graphic using the default setting, 'slip', for the
OverrunAction property in the Rate object. See OverrunAction for more information
on overrun code execution.

The output of statistics is:

stats =

 Periods: [0.7 0.11 0.7 0.11]
 NumPeriods: 4
 AveragePeriod: 0.09
 StandardDeviation: 0.0231
 NumOverruns: 2

 statistics

2-281

Input Arguments
rate — Rate object
handle

Rate object, specified as an object handle. This object contains the information for the
DesiredRate and other info about the execution. See robotics.Rate for more
information.

Output Arguments
stats — Time execution statistics
structure

Time execution statistics, returned as a structure. This structure contains the following
fields:

• Period — All time periods (returned in seconds) used to calculate statistics as an
indexed array. stats.Period(end) is the most recent period.

• NumPeriods — Number of elements in Periods
• AveragePeriod — Average time in seconds
• StandardDeviation — Standard deviation of all periods in seconds, centered

around the mean stored in AveragePeriod
• NumOverruns — Number of periods with overrun

Examples

Get Statistics From Rate Object Execution

Create a Rate object for running at 20 Hz.

r = robotics.Rate(2);

Start a loop and control operation using the Rate object.

for i = 1:30
 % Your code goes here

2 Functions — Alphabetical List

2-282

 waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

stats =

 struct with fields:

 Periods: [1x30 double]
 NumPeriods: 30
 AveragePeriod: 0.5000
 StandardDeviation: 0.0050
 NumOverruns: 0

• “Execute Code at a Fixed-Rate”

See Also
robotics.Rate | rosrate | waitfor

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a

 statistics

2-283

stopNode
Stop ROS node

Syntax
stopNode(device,modelName)

Description
stopNode(device,modelName) stops a running ROS node running that was deployed
from a Simulink model named modelName. The node is running on the specified
rosdevice object, device. If the node is not running, the function immediately.

Examples

Run ROS Node on ROS Device

Connect to a remote ROS device and start a ROS node. First, run a ROS core so that
ROS nodes can communicate via a ROS network. You can run and stop a ROS core or
node and check their status using a rosdevice object.

Create a connection to a ROS device. Specify the address, user name and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password');
d.ROSFolder = '/opt/ros/hydro';
d.CatkinWorkspace = '~/catkin_ws_test'

d =

 rosdevice with properties:

2 Functions — Alphabetical List

2-284

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

Another roscore / ROS master is already running on the ROS device. Use the 'stopCore' function to stop it.
Initializing global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Run a ROS node. specifying the node name. Check if the node is running.

runNode(d,'robotcontroller')
running = isNodeRunning(d,'robotcontroller')

running =

 logical

 1

Stop the ROS node. Disconnect from the ROS network. Stop the ROS core.

 stopNode

2-285

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

stopNode(d,'robotcontroller')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_15046 with NodeURI http://192.168.154.1:56086/

Run Multiple ROS Nodes

Run multiple ROS nodes on a connected ROS device. ROS nodes can be generated using
Simulink® models to perform different tasks on the ROS network. These nodes are then
deployed on a ROS device and can be run independently of Simulink.

This example uses two different Simulink models that have been deployed as ROS nodes.
See Generate a standalone ROS node from Simulink®). and follow the instructions to
generate and deploy a ROS node. The 'robotcontroller' node sends velocity
commands to a robot to navigate it to a given point. The 'robotcontroller2' node
uses the same model, but doubles the linear velocity to drive the robot faster.

Create a connection to a ROS device. Specify the address, user name, and password of
your specific ROS device. The device contains information about the ROS device,
including the available ROS nodes that can be run using runNode.

ipaddress = '192.168.154.131';
d = rosdevice(ipaddress,'user','password')

d =

 rosdevice with properties:

 DeviceAddress: '192.168.154.131'
 Username: 'user'
 ROSFolder: '/opt/ros/hydro'
 CatkinWorkspace: '~/catkin_ws_test'
 AvailableNodes: {'robotcontroller' 'robotcontroller2'}

Run a ROS core. Connect MATLAB® to the ROS master using rosinit. This ROS core
enables you to run ROS nodes on your ROS device.

runCore(d)
rosinit(d.DeviceAddress)

2 Functions — Alphabetical List

2-286

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

Initializing global node /matlab_global_node_68749 with NodeURI http://192.168.154.1:64205/

Check the available ROS nodes on the connected ROS device. These nodes were
generated from Simulink® models following the process in the Generate a standalone
ROS node from Simulink® example.

d.AvailableNodes

ans =

 1×2 cell array

 'robotcontroller' 'robotcontroller2'

Start up the Robot Simulator using ExampleHelperSimulinkRobotROS. This simulator
automatically connects to the ROS master on the ROS device. You will use this simulator
to run a ROS node and control the robot.

sim = ExampleHelperSimulinkRobotROS;

 stopNode

2-287

matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')
matlab:helpview(fullfile(docroot,'robotics/examples/robotics_examples.map'),'robotROSCodeGenerationExample')

Run a ROS node, specifying the node name. The 'robotcontroller' node commands
the robot to a specific location ([-10 10]). Wait to see the robot drive.

runNode(d,'robotcontroller')
pause(10)

2 Functions — Alphabetical List

2-288

Reset the Robot Simulator to reset the robot position. Alternatively, click Reset
Simulation. Because the node is still running, the robot continues back to the specific
location. To stop sending commands, stop the node.

resetSimulation(sim.Simulator)
pause(5)
stopNode(d,'robotcontroller')

 stopNode

2-289

Run the 'robotcontroller2' node. This model drives the robot with twice the linear
velocity. Reset the robot position. Wait to see the robot drive.

runNode(d,'robotcontroller2')
resetSimulation(sim.Simulator)
pause(10)

2 Functions — Alphabetical List

2-290

Close the simulator. Stop the ROS node. Disconnect from the ROS network and stop the
ROS core.

close
stopNode(d,'robotcontroller2')
rosshutdown
stopCore(d)

Shutting down global node /matlab_global_node_68749 with NodeURI http://192.168.154.1:64205/

• “Generate a Standalone ROS Node from Simulink®”

 stopNode

2-291

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

modelName — Name of the deployed Simulink model
character vector

Name of the deployed Simulink model, specified as a character vector. If the model name
is not valid, the function returns immediately.

See Also
isNodeRunning | rosdevice | runNode

Topics
“Generate a Standalone ROS Node from Simulink®”

Introduced in R2016b

2 Functions — Alphabetical List

2-292

system
Execute system command on device

Syntax
system(device,command)
system(device,command,'sudo')
response = system(___)

Description
system(device,command) runs a command in the Linux command shell on the ROS
device. This function does not allow you to run interactive commands.

system(device,command,'sudo') runs a command with superuser privileges.

response = system(___) runs a command using any of the previous syntaxes with
the command shell output returned in response.

Examples

Run Linux Commands on ROS Device

Connect to a ROS device and run commands on the Linux® command shell.

Connect to a ROS device. Specify the device address, user name, and password of your
ROS device.

d = rosdevice('192.168.154.131','user','password');

Run a command that lists the contents of the Catkin workspace folder.

system(d,'ls /home/user/catkin_ws_test')

 system

2-293

ans =

build
devel
robotcontroller2_node.log
robotcontroller_node.log
src

Input Arguments
device — ROS device
rosdevice object

ROS device, specified as a rosdevice object.

command — Linux command
character vector

Linux command, specified as a character vector.
Example: 'ls -al'

Output Arguments
response — Output from Linux shell
character vector

Output from Linux shell, returned as a character vector.

See Also
deleteFile | dir | getFile | openShell | putFile | rosdevice

Introduced in R2016b

2 Functions — Alphabetical List

2-294

tform2axang
Convert homogeneous transformation to axis-angle rotation

Syntax
axang = tform2axang(tform)

Description
axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform = [1 0 0 0; 0 0 -1 0; 0 1 0 0; 0 0 0 1];
axang = tform2axang(tform)

axang =

 1.0000 0 0 1.5708

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

 tform2axang

2-295

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axes, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2tform

Introduced in R2015a

2 Functions — Alphabetical List

2-296

tform2eul
Extract Euler angles from homogeneous transformation

Syntax
eul = tform2eul(tform)
eul = tform2eul(tform, sequence)

Description
eul = tform2eul(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as Euler angles, eul. The translational
components of tform are ignored. The input homogeneous transformation must be in the
premultiply form for transformations. The default order for Euler angle rotations is
'ZYX'.

eul = tform2eul(tform, sequence) extracts the Euler angles, eul, from a
homogeneous transformation, tform, using the specified rotation sequence, sequence.
The default order for Euler angle rotations is 'ZYX'.

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYX = tform2eul(tform)

eulZYX =

 0 0 3.1416

 tform2eul

2-297

Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ Rotation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYZ = tform2eul(tform,'ZYZ')

eulZYZ =

 0 -3.1416 3.1416

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ' | 'XYZ'

Axis rotation sequence for the Euler angles, specified as one of these character vectors:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.
• 'XYZ' – The order of rotation angles is x-axis, y-axis, z-axis.

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

2 Functions — Alphabetical List

2-298

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2tform

Introduced in R2015a

 tform2eul

2-299

tform2quat
Extract quaternion from homogeneous transformation

Syntax
quat = tform2quat(tform)

Description
quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational
components of tform are ignored. The input homogeneous transformation must be in the
premultiply form for transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
quat = tform2quat(tform)

quat =

 0 1 0 0

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

2 Functions — Alphabetical List

2-300

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2tform

Introduced in R2015a

 tform2quat

2-301

tform2rotm
Extract rotation matrix from homogeneous transformation

Syntax
rotm = tform2rotm(tform)

Description
rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The
translational components of tform are ignored. The input homogeneous transformation
must be in the pre-multiply form for transformations. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
rotm = tform2rotm(tform)

rotm =

 1 0 0
 0 -1 0

2 Functions — Alphabetical List

2-302

 0 0 -1

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the pre-multiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2tform

 tform2rotm

2-303

Introduced in R2015a

2 Functions — Alphabetical List

2-304

tform2trvec
Extract translation vector from homogeneous transformation

Syntax
trvec = tform2trvec(tform)

Description
trvec = tform2trvec(tform) extracts the Cartesian representation of translation
vector, trvec , from a homogeneous transformation, tform. The rotational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Extract Translation Vector from Homogeneous Transformation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
trvec = tform2trvec(tform)

trvec =

 0.5000 5.0000 -1.2000

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

 tform2trvec

2-305

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-3 matrix containing
n translation vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trvec2tform

Introduced in R2015a

2 Functions — Alphabetical List

2-306

timeseries
Creates a time series object for selected message properties

Syntax
[ts,cols] = timeseries(bag)
[ts,cols] = timeseries(bag,property)
[ts,cols] = timeseries(bag,property,...,propertyN)

Description
[ts,cols] = timeseries(bag) creates a time series for all numeric and scalar
message properties. The function evaluates each message in the current BagSelection
object, bag, as ts. The cols output argument stores property names as a cell array of
character vectors.

The returned time series object is memory-efficient because it stores only particular
message properties instead of whole messages.

[ts,cols] = timeseries(bag,property) creates a time series for a specific
message property, property. Property names can also be nested, for example,
'Pose.Pose.Position.X' for the x-axis position of a robot.

[ts,cols] = timeseries(bag,property,...,propertyN) creates a time series for
a range specific message properties. Each property is a different column in the time
series object.

Examples

Create Time Series from Entire Bag Selection

Load rosbag. Specify the file path.

 timeseries

2-307

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');
bag = rosbag(filepath);

Select a specific topic. Time series only support single topics.

bagSelection = select(bag,'Topic','/odom');

Create time series for the '/odom' topic.

ts = timeseries(bagSelection);

Create Time Series from Single Property

Load rosbag. Specify the file path.

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');
bag = rosbag(filepath);

Select a specific topic. Time series only support single topics.

bagSelection = select(bag,'Topic','/odom');

Create time series for the 'Pose.Pose.Position.X' property on the '/odom' topic.

ts = timeseries(bagSelection,'Pose.Pose.Position.X');

Create Time Series from Multiple Properties

Load rosbag. Specify the file path.

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');
bag = rosbag(filepath);

Select a specific topic. Time series only support single topics.

bagSelection = select(bag,'Topic','/odom');

Create time series for all the angular 'Twist' properties on the '/odom' topic.

2 Functions — Alphabetical List

2-308

ts = timeseries(bagSelection,'Twist.Twist.Angular.X', ...
 'Twist.Twist.Angular.Y', 'Twist.Twist.Angular.Z');

Input Arguments
bag — Bag selection
BagSelection object handle

Bag selection, specified as a BagSelection object handle. You can get a bag selection by
calling rosbag.

property — Property names
character vector

Property names, specified as a character vector. Multiple properties can be specified.
Each property name is a separate input and represents a different column in the time
series object.

Output Arguments
ts — Time series
Time object handle

Time series, returned as a Time object handle.

cols — List of property names
cell array of character vectors

List of property names, returned as a cell array of character vectors.

See Also
readMessages | rosbag | select

Topics
“Time Series Basics” (MATLAB)

 timeseries

2-309

Introduced in R2015a

2 Functions — Alphabetical List

2-310

transform
Transform message entities into target coordinate frame

Syntax
tfentity = transform(tftree,targetframe,entity)
tfentity = transform(tftree,targetframe,entity,'msgtime')
tfentity = transform(tftree,targetframe,entity,sourcetime)

Description
tfentity = transform(tftree,targetframe,entity) retrieves the latest
transformation between targetframe and the coordinate frame of entity and applies
it to entity, a ROS message of a specific type. tftree is the full transformation tree
containing known transformations between entities. If the transformation from entity
to targetframe does not exist, MATLAB throws an error.

tfentity = transform(tftree,targetframe,entity,'msgtime') uses the
timestamp in the header of the message, entity, as the source time to retrieve and
apply the transformation.

tfentity = transform(tftree,targetframe,entity,sourcetime) uses the
given source time to retrieve and apply the transformation to the message, entity.

Examples

Get ROS Transformations and Apply to ROS Messages

This example shows how to setup a ROS transformation tree and transform frames based
on this information. It uses time-buffered transformations to access transformations at
different times.

 transform

2-311

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '172.28.194.91';
rosinit(ipaddress)
tftree = rostf;
pause(1);

Initializing global node /matlab_global_node_93523 with NodeURI http://172.28.194.90:64339/

Look at the available frames on the transformation tree.

tftree.AvailableFrames

ans =

 'base_footprint'
 'base_link'
 'camera_depth_frame'
 'camera_depth_optical_frame'
 'camera_link'
 'camera_rgb_frame'
 'camera_rgb_optical_frame'
 'caster_back_link'
 'caster_front_link'
 'cliff_sensor_front_link'
 'cliff_sensor_left_link'
 'cliff_sensor_right_link'
 'gyro_link'
 'odom'
 'plate_bottom_link'
 'plate_middle_link'
 'plate_top_link'
 'pole_bottom_0_link'
 'pole_bottom_1_link'
 'pole_bottom_2_link'
 'pole_bottom_3_link'
 'pole_bottom_4_link'
 'pole_bottom_5_link'
 'pole_kinect_0_link'
 'pole_kinect_1_link'
 'pole_middle_0_link'
 'pole_middle_1_link'
 'pole_middle_2_link'

2 Functions — Alphabetical List

2-312

 'pole_middle_3_link'
 'pole_top_0_link'
 'pole_top_1_link'
 'pole_top_2_link'
 'pole_top_3_link'
 'wheel_left_link'
 'wheel_right_link'

Check if the desired transformation is available now. This example is looking for the
transformation from 'camera_link' to 'base_link'.

canTransform(tftree,'base_link','camera_link')

ans =

 1

Get the transformation for 3 seconds from now. getTransform will wait until the
transformation becomes available with the specified timeout.

desiredTime = rostime('now')+3;
tform = getTransform(tftree,'base_link','camera_link',...
 desiredTime,'Timeout',5);

Create a ROS message to transform. Messages could be retrieved off the ROS network as
well.

pt = rosmessage('geometry_msgs/PointStamped');
pt.Header.FrameId = 'camera_link';
pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the ROS message to the 'base_link' frame using the desired time saved
from before.

tfpt = transform(tftree,'base_link',pt,desiredTime);

Optional: You can also use apply with the stored tform to apply this transformation to
the pt message.

tfpt2 = apply(tform,pt);

 transform

2-313

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_93523 with NodeURI http://172.28.194.90:64339/

Get Buffered Transformations from ROS Network

This example shows how to access time-buffered transformations on the ROS network.
Access transformations for specific times and modify the BufferTime property based on
your desired times.

Create a ROS transformation tree. You must be connected to a ROS network using
rosinit. Replace ipaddress with your ROS network address.

ipaddress = '192.168.154.131';
rosinit(ipaddress)
tftree = rostf;
pause(2);

Initializing global node /matlab_global_node_83561 with NodeURI http://192.168.154.1:64505/

Get the transformation from 1 seconds ago.

desiredTime = rostime('now')-1;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

The transformation buffer time is 10 seconds by default. Modify the BufferTime
property of the transformation tree to increase the buffer time and wait for that buffer to
fill.

tftree.BufferTime = 15;
pause(15);

Get the transformation from 12 seconds ago.

desiredTime = rostime('now')-12;
tform = getTransform(tftree,'base_link','camera_link',desiredTime);

You can also get transformations at a time in the future. getTransform will wait until
the transformation is available. You can also specify a timeout to error out if no
transformation is found. This example waits 5 seconds for the transformation at 3
seconds from now to be available.

2 Functions — Alphabetical List

2-314

desiredTime = rostime('now')+3;
tform = getTransform(tftree,'base_link','camera_link',desiredTime,'Timeout',5);

Shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_83561 with NodeURI http://192.168.154.1:64505/

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
character vector

Target coordinate frame that entity transforms into, specified as a character vector. You
can view the available frames for transformation calling tftree.AvailableFrames.

entity — Initial message entity
Message object handle

Initial message entity, specified as a Message object handle.

Supported messages are:

• geometry_msgs/PointStamped
• geometry_msgs/PoseStamped
• geometry_msgs/QuaternionStamped
• geometry_msgs/Vector3Stamped
• sensor_msgs/PointCloud2

sourcetime — ROS or system time
scalar | Time object handle

 transform

2-315

ROS or system time, specified as a scalar or Time object handle. The scalar is converted
to a Time object using rostime.

Output Arguments
tfentity — Transformed entity
Message object handle

Transformed entity, returned as a Message object handle.

See Also
canTransform | getTransform

Introduced in R2015a

2 Functions — Alphabetical List

2-316

transformScan
Transform laser scan based on relative pose

Syntax
transScan = transformScan(scan,relPose)

[transRanges,transAngles] = transformScan(ranges,angles,relPose)

Description
transScan = transformScan(scan,relPose) transforms the laser scan specified in
scan by using the specified relative pose, relPose.

[transRanges,transAngles] = transformScan(ranges,angles,relPose)
transforms the laser scan specified in ranges and angles by using the specified relative
pose, relPose.

Examples

Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

 transformScan

2-317

rotScan = transformScan(refScan,[0,0,deg2rad(20)]);

Use Scan Matching to Transform Scans

Use the matchScans function to find the relative transformation between two laser
scans. Then transform the second laser scan into the coordinate frame of the first laser
scan.

This example requires an Optimization Toolbox™ license.

Specify a laser scan as ranges and angles. Create a second laser scan that is offset from
the first using transformScan. This transformation simulates a second laser scan being
collected from a new coordinate frame.

refRanges = 5*ones(1,300);
refRanges(51:150) = 3*ones(1,100);
refAngles = linspace(-pi/2,pi/2,300);
offset = [0.5 0.2 0];
[currRanges,currAngles] = transformScan(refRanges,refAngles,offset);

Use scan matching to find the relative pose between the two laser scans. This pose is
close to the specified offset. You must have an Optimization Toolbox™ license to use
the matchScans function.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,'SolverAlgorithm','fminunc')

pose =

 -0.5102 -0.1806 -0.0394

Transform the second scan to the coordinate frame of the first scan. Plot the two scans to
see how they overlap.

[currRanges2,currAngles2] = transformScan(currRanges,currAngles,pose);
clf
polarplot(refAngles,refRanges,'or')
hold on
polarplot(currAngles2,currRanges2,'.b')
legend('First laser scan','Second laser scan')
hold off

2 Functions — Alphabetical List

2-318

• “Estimate Robot Pose with Scan Matching”
• “Compose a Series of Laser Scans with Pose Changes”

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

 transformScan

2-319

Range values from scan data, specified as a vector in meters. These range values are
distances from a sensor at specified angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the
specific angles of the specified ranges. The vector must be the same length as the
corresponding ranges vector.

relPose — Relative pose of current scan
[x y theta]

Relative pose of current scan, specified as [x y theta], where [x y] is the translation
in meters and theta is the rotation in radians.

Output Arguments
transScan — Transformed lidar scan readings
lidarScan object

Transformed lidar scan readings, specified as a lidarScan object.

transRanges — Range values of transformed scan
vector

Range values of transformed scan, returned as a vector in meters. These range values
are distances from a sensor at specified transAngles. The vector is the same length as
the corresponding transAngles vector.

transAngles — Angle values from scan data
vector

Angle values of transformed scan, returned as a vector in radians. These angle values are
the specific angles of the specified transRanges. The vector is the same length as the
corresponding ranges vector.

2 Functions — Alphabetical List

2-320

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
LaserScan | lidarScan | matchScans | readCartesian | readScanAngles

Classes
MonteCarloLocalization | OccupancyGrid

Topics
“Estimate Robot Pose with Scan Matching”
“Compose a Series of Laser Scans with Pose Changes”

Introduced in R2017a

 transformScan

2-321

trvec2tform
Convert translation vector to homogeneous transformation

Syntax
tform = trvec2tform(trvec)

Description
tform = trvec2tform(trvec) converts the Cartesian representation of a translation
vector, trvec, to the corresponding homogeneous transformation, tform. When using
the transformation matrix, premultiply it with the coordinates to be transformed (as
opposed to postmultiplying).

Examples

Convert Translation Vector to Homogeneous Transformation

trvec = [0.5 6 100];
tform = trvec2tform(trvec)

tform =

 1.0000 0 0 0.5000
 0 1.0000 0 6.0000
 0 0 1.0000 100.0000

2 Functions — Alphabetical List

2-322

 0 0 0 1.0000

Input Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, specified as an n-by-3 matrix containing
n translation vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2trvec

Introduced in R2015a

 trvec2tform

2-323

waitfor
Package: robotics

Pause code execution to achieve desired execution rate

Syntax
waitfor(rate)
numMisses = waitfor(rate)

Description
waitfor(rate) pauses execution until the code reaches the desired execution rate. The
function accounts for the time that is spent executing code between waitfor calls.

numMisses = waitfor(rate) returns the number of iterations missed while executing
code between calls.

Examples

Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = robotics.Rate(1);

Start a loop using the Rate object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
 time = r.TotalElapsedTime;
 fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
 waitfor(r);
end

2 Functions — Alphabetical List

2-324

Iteration: 1 - Time Elapsed: 0.006148
Iteration: 2 - Time Elapsed: 1.007045
Iteration: 3 - Time Elapsed: 2.004028
Iteration: 4 - Time Elapsed: 3.003421
Iteration: 5 - Time Elapsed: 4.005034
Iteration: 6 - Time Elapsed: 5.012938
Iteration: 7 - Time Elapsed: 6.000512
Iteration: 8 - Time Elapsed: 7.000391
Iteration: 9 - Time Elapsed: 8.000306
Iteration: 10 - Time Elapsed: 9.001195

Each iteration executes at a 1-second interval.

• “Execute Code at a Fixed-Rate”

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired
rate and other information about the execution. See robotics.Rate for more
information.

Output Arguments
numMisses — Number of missed task executions
scalar

Number of missed task executions, returned as a scalar. waitfor returns the number of
times the task was missed in the Rate object based on the LastPeriod time. For
example, if the desired rate is 1 Hz and the last period was 3.2 seconds, numMisses
returns 3.

See Also
robotics.Rate | rosrate | waitfor

 waitfor

2-325

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a

2 Functions — Alphabetical List

2-326

waitForServer
Wait for action server to start

Syntax
waitForServer(client)
waitForServer(client,timeout)

Description
waitForServer(client) waits until the action server is started up and available to
send goals. The IsServerConnected property of the SimpleActionClient shows the
status of the server connection. Press Ctrl+C to abort the wait.

waitForServer(client,timeout) specifies a timeout period in seconds. If the server
does not start up in the timeout period, this function displays an error.

Examples

Setup a ROS Action Client and Execute an Action

This example shows how to create a ROS action client and execute the action. Action
types must be setup beforehand with an action server running.

You must have the '/fibonacci' action type setup. To run this action server use the
following command on the ROS system:

rosrun actionlib_tutorials fibonacci_server

Connect to a ROS network. You must be connected to a ROS network to gather
information about what actions are available. Replace ipaddress with your network
address.

 waitForServer

2-327

ipaddress = '192.168.154.131';
rosinit(ipaddress)

Initializing global node /matlab_global_node_68978 with NodeURI http://192.168.154.1:51256/

List actions available on the network. The only action setup on this network is the '/
fibonacci' action.

rosaction list

/fibonacci

Create an action client. Specify the action name.

[actClient,goalMsg] = rosactionclient('/fibonacci');

Wait for action client to connect to server.

waitForServer(actClient);

The fibonacci action will calculate the fibonacci sequence for a given order specified in
the goal message. The goal message was returned when creating the action client and
can be modified to send goals to the ROS action server.

goalMsg.Order = 8

goalMsg =

 ROS FibonacciGoal message with properties:

 MessageType: 'actionlib_tutorials/FibonacciGoal'
 Order: 8

 Use showdetails to show the contents of the message

Send goal and wait for its completion. Specify a timeout of 10 seconds to complete the
action.

[resultMsg,resultState] = sendGoalAndWait(actClient,goalMsg,10)

Goal active
Feedback:
 Sequence : [0, 1, 1]

2 Functions — Alphabetical List

2-328

Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Final state succeeded with result:
 Sequence : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

resultMsg =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [10×1 int32]

 Use showdetails to show the contents of the message

resultState =

 1×9 char array

succeeded

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_68978 with NodeURI http://192.168.154.1:51256/

 waitForServer

2-329

Send and Cancel ROS Action Goals

Send and cancel goals for ROS actions. First, setup a ROS action client. Then send a goal
message with modified parameters. Finally, cancel your goal and all goals on the action
server.

Connect to a ROS network with a specified IP address. Create a ROS action client
connected using rosactionclient. Specify the action name. Wait for the client to be
connected to the server.

rosinit('192.168.154.131')
[actClient,goalMsg] = rosactionclient('/fibonacci');
waitForServer(actClient);

Initializing global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Send a goal message with modified parameters. Wait for the goal to finish executing.

goalMsg.Order = 4;
sendGoalAndWait(actClient,goalMsg)

Goal active
Feedback:
 Sequence : [0, 1, 1]
Feedback:
 Sequence : [0, 1, 1, 2]
Feedback:
 Sequence : [0, 1, 1, 2, 3]
Feedback:
 Sequence : [0, 1, 1, 2, 3, 5]

ans =

 ROS FibonacciResult message with properties:

 MessageType: 'actionlib_tutorials/FibonacciResult'
 Sequence: [6×1 int32]

 Use showdetails to show the contents of the message

Send a new goal message without waiting.

goalMsg.Order = 5;
sendGoal(actClient,goalMsg)

2 Functions — Alphabetical List

2-330

Cancel the goal on the ROS action client, actClient.

cancelGoal(actClient)

Cancel all the goals on the action server that actClient is connected to.

cancelAllGoals(actClient)

Delete the action client.

delete(actClient)

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_40739 with NodeURI http://192.168.154.1:57343/

Input Arguments
client — ROS action client
SimpleActionClient object handle

ROS action client, specified as a SimpleActionClient object handle. This simple action
client enables you to track a single goal at a time.

timeout — Timeout period
scalar in seconds

Timeout period for setting up ROS action server, specified as a scalar in seconds. If the
client does not connect to the server in the specified time period, an error is displayed.

See Also
cancelGoal | rosaction | rosactionclient | sendGoalAndWait

Topics
“ROS Actions Overview”
“Move a Turtlebot Robot Using ROS Actions”

 waitForServer

2-331

Introduced in R2016b

2 Functions — Alphabetical List

2-332

waitForTransform
Wait until a transformation is available

Note waitForTransform will be removed in a future release. Use getTransform with
a specified timeout instead. Use inf to wait indefinitely.

Syntax
waitForTransform(tftree,targetframe,sourceframe)
waitForTransform(tftree,targetframe,sourceframe,timeout)

Description
waitForTransform(tftree,targetframe,sourceframe) waits until the
transformation between targetframe and sourceframe is available in the
transformation tree, tftree. This functions disables the command prompt until a
transformation becomes available on the ROS network.

waitForTransform(tftree,targetframe,sourceframe,timeout) specifies a
timeout period in seconds. If the transformation does not become available, MATLAB
displays an error, but continues running the current program.

Examples

Wait for Transformation Between Robot Frames

Connect to the ROS network. Specify the IP address of your network.

rosinit('192.168.154.131')

Initializing global node /matlab_global_node_73613 with NodeURI http://192.168.154.1:59388/

Create a ROS transformation tree.

 waitForTransform

2-333

tftree = rostf;

Wait for the transformation between the target frame, /camera_depth_frame, and the
source frame, /base_link, to be available. Specify a timeout of 5 seconds.

waitForTransform(tftree,'/camera_depth_frame','/base_link',5);

Get the transformation.

tform = getTransform(tftree,'/camera_depth_frame','/base_link');

When you are finished, disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_73613 with NodeURI http://192.168.154.1:59388/

Input Arguments
tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
character vector

Target coordinate frame, specified as a character vector. You can view the available
frames for transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
character vector

Initial coordinate frame, specified as a character vector. You can view the available
frames for transformation using tftree.AvailableFrames.

timeout — Timeout period
scalar in seconds

Timeout period, specified as a scalar in seconds. If the transformation does not become
available, MATLAB displays an error, but continues running the current program.

2 Functions — Alphabetical List

2-334

See Also
getTransform | receive | transform

Introduced in R2015a

 waitForTransform

2-335

writeBinaryOccupancyGrid
Write values from grid to ROS message

Syntax
writeBinaryOccupancyGrid(msg,map)

Description
writeBinaryOccupancyGrid(msg,map) writes occupancy values and other
information to the ROS message, msg, from the binary occupancy grid, map.

Examples

Write Binary Occupancy Grid Information to ROS Message

Create occupancy grid and message. Write the map onto the message.

map = robotics.BinaryOccupancyGrid(randi([0,1], 10));
msg = rosmessage('nav_msgs/OccupancyGrid');
writeBinaryOccupancyGrid(msg, map);

Input Arguments
map — Binary occupancy grid
BinaryOccupancyGrid object handle

Binary occupancy grid, specified as a BinaryOccupancyGrid object handle. map is
converted to a 'nav_msgs/OccupancyGrid' message on the ROS network. map is an
object with a grid of binary values, where 1 indicates an occupied location and 0
indications an unoccupied location.

2 Functions — Alphabetical List

2-336

msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object
handle.

See Also
readBinaryOccupancyGrid | robotics.BinaryOccupancyGrid

Introduced in R2015a

 writeBinaryOccupancyGrid

2-337

writeImage
Write MATLAB image to ROS image message

Syntax
writeImage(msg,img)
writeImage(msg,img,alpha)

Description
writeImage(msg,img) converts the MATLAB image, img, to a message object and
stores the ROS compatible image data in the message object, msg. The message must be
a 'sensor_msgs/Image' message. 'sensor_msgs/CompressedImage' messages are
not supported.

writeImage(msg,img,alpha) converts the MATLAB image, img to a message object.
If the image encoding supports an alpha channel (rgba or bgra family), specify this
alpha channel in alpha. Alternatively, the input image can store the alpha channel as
its fourth channel.

Examples

Write Image to Message

Read an image.

image = imread('imageMap.png');

Create a ROS image message. Specify the default encoding for the image. Write the
image to the message.

2 Functions — Alphabetical List

2-338

msg = rosmessage('sensor_msgs/Image');
msg.Encoding = 'rgb8';
writeImage(msg,image);

Input Arguments
msg — ROS image message
Image object handle

'sensor_msgs/Image' ROS image message, specified as an Image object handle.
'sensor_msgs/Image' image messages are not supported.

img — Image
grayscale image matrix | RBG image matrix | m-by-n-by-3 array

Image, specified as a matrix representing a grayscale or RGB image or as am-by-n-by-3
array, depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, specified as a uint8 grayscale image. Alpha must be the same size and
data type as img.

ROS Image Encoding
You must specify encoding of the input image in the 'Encoding' property of the image
message. If you do not specify the image encoding before calling the function, the default
encoding, rgb8, is used (3-channel RGB image with uint8 values).

All encoding types supported for the readImage are also supported in this function. For
more information on supported encoding types and their representations in MATLAB,
see readImage.

Bayer-encoded images (bayer_rggb8, bayer_bggr8, bayer_gbrg8, bayer_grbg8 and
their 16-bit equivalents) must be given as 8-bit or 16-bit single-channel images or they do
not encode.

 writeImage

2-339

See Also
readImage

Introduced in R2015a

2 Functions — Alphabetical List

2-340

Methods — Alphabetical List

3

copy
Class: robotics.BinaryOccupancyGrid
Package: robotics

Copy array of handle objects

Syntax
b = copy(a)

Description
b = copy(a) copies each element in the array of handles, a, to the new array of
handles, b.

The copy method does not copy dependent properties. MATLAB does not call copy
recursively on any handles contained in property values. MATLAB does not call the class
constructor or property set methods during the copy operation.

b has the same number of elements and is the same size and class ofa. b is the same
class as a. If a is empty, b is also empty. If a is heterogeneous, b is also heterogeneous. If
a contains deleted handles, then copy creates deleted handles of the same class in b.
Dynamic properties and listeners associated with objects in a are not copied to objects in
a.

copy is a sealed and public method in class matlab.mixin.Copyable.

Input Arguments
a — Object array
handle

Object array, specified as a handle.

3 Methods — Alphabetical List

3-2

Output Arguments
b — Object array containing copies of the objects in a
handle

Object array containing copies of the object in a, specified as a handle.

See Also
robotics.BinaryOccupancyGrid

Introduced in R2015a

 copy

3-3

getOccupancy
Class: robotics.BinaryOccupancyGrid
Package: robotics

Get occupancy value for one or more positions

Syntax
occval = getOccupancy(map,xy)
occval = getOccupancy(map,ij,'grid')

Description
occval = getOccupancy(map,xy) returns an array of occupancy values for an input
array of world coordinates, xy. Each row of xy is a point in the world, represented as an
[x y] coordinate pair. occval is the same length as xy and a single column array. An
occupied location is represented as true (1), and a free location is represented as false
(0).

occval = getOccupancy(map,ij,'grid') returns an array of occupancy values
based on a [rows cols]input array of grid positions, ij.

Input Arguments
map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

3 Methods — Alphabetical List

3-4

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.
Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.
Data Types: double

Output Arguments
occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or ij.

See Also
robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.setOccupancy

Introduced in R2015a

 getOccupancy

3-5

grid2world
Class: robotics.BinaryOccupancyGrid
Package: robotics

Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an
array of world coordinates, xy.

Input Arguments
map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

3 Methods — Alphabetical List

3-6

Output Arguments
xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.world2grid

Introduced in R2015a

 grid2world

3-7

inflate
Class: robotics.BinaryOccupancyGrid
Package: robotics

Inflate each occupied grid location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the map by the radius given in
meters. radius is rounded up to the nearest cell equivalent based on the resolution of
the map. Every cell within the radius is set to true (1).

inflate(map,gridradius,'grid') inflates each occupied position by the radius
given in number of cells.

Input Arguments
map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

radius — Dimension the defines how much to inflate occupied locations
scalar

Dimension that defines how much to inflate occupied locations, specified as a scalar.
radius is rounded up to the nearest cell value.

3 Methods — Alphabetical List

3-8

Data Types: double

gridradius — Dimension the defines how much to inflate occupied locations
positive scalar

Dimension that defines how much to inflate occupied locations, specified as a positive
scalar. gridradius is the number of cells to inflate the occupied locations.
Data Types: double

See Also
robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.setOccupancy

Introduced in R2015a

 inflate

3-9

setOccupancy
Class: robotics.BinaryOccupancyGrid
Package: robotics

Set occupancy value for one or more positions

Syntax
setOccupancy(map,xy,occval)
setOccupancy(map,ij,occval,'grid')

Description
setOccupancy(map,xy,occval) assigns occupancy values, occval, to the input array
of world coordinates, xy in the occupancy grid, map. Each row of the array, xy, is a point
in the world and is represented as an [x y] coordinate pair. occval is either a scalar or
a single column array of the same length as xy . An occupied location is represented as
true (1), and a free location is represented as false (0).

setOccupancy(map,ij,occval,'grid') assigns occupancy values, occval, to the
input array of grid indices, ij, as [rows cols].

Input Arguments
map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

3 Methods — Alphabetical List

3-10

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.
Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.
Data Types: double

occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or ij.

Examples

Set Occupancy Values

Set the occupancy of grid locations using setOccupancy.

Initialize an occupancy grid object using BinaryOccupancyGrid.

map = robotics.BinaryOccupancyGrid(10,10);

Set the occupancy of a specific location using setOccupancy.

setOccupancy(map,[8 8],1);

Set the occupancy of an array of locations.

 setOccupancy

3-11

[x,y] = meshgrid(2:5);
setOccupancy(map,[x(:) y(:)],1);

See Also
robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.getOccupancy

Introduced in R2015a

3 Methods — Alphabetical List

3-12

show
Class: robotics.BinaryOccupancyGrid
Package: robotics

Show occupancy grid values

Syntax
show(map)
show(map, 'grid')

show(___ ,'Parent',parent)

h = show(map, ___)

Description
show(map) displays the binary occupancy grid map in the current axes, with the axes
labels representing the world coordinates.

show(map, 'grid') displays the binary occupancy grid map in the current axes, with
the axes labels representing the grid coordinates.

show(___ ,'Parent',parent) sets the specified axes handle parent to the axes,
using any of the arguments from previous syntaxes.

h = show(map, ___) returns the figure object handle created by show.

Input Arguments
map — Map representation
BinaryOccupancyGrid object

 show

3-13

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as either an Axes or UIAxesobject. See axes or uiaxes.

See Also
robotics.BinaryOccupancyGrid

Introduced in R2015a

3 Methods — Alphabetical List

3-14

world2grid
Class: robotics.BinaryOccupancyGrid
Package: robotics

Convert world coordinates to grid indices

Syntax
ij = world2grid(map,xy)

Description
ij = world2grid(map,xy) converts an array of world coordinates, xy, to a [rows
cols] array of grid indices, ij.

Input Arguments
map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

 world2grid

3-15

Output Arguments
ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.grid2world

Introduced in R2015a

3 Methods — Alphabetical List

3-16

step
System object: robotics.GeneralizedInverseKinematics
Package: robotics

Solve generalized inverse kinematics

Syntax
[configSol,solInfo] = step(gik,initialguess,
constraintObj,...,constraintObjN)

Description

Note Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

[configSol,solInfo] = step(gik,initialguess,
constraintObj,...,constraintObjN) finds a joint configuration, configSol, based
on the initial guess and a comma-separated list of constraint description objects. The
number of constraint descriptions depends on the ConstraintInputs property specified
in the generalized inverse kinematics solver, gik.

Input Arguments
gik — Generalized inverse kinematics solver
GeneralizedInverseKinematics object

Inverse kinematics solver, specified as a GeneralizedInverseKinematics object.

initialguess — Initial guess of robot configuration
structure array | vector

 step

3-17

Initial guess of robot configuration, specified as a structure array or vector. The value of
initialguess depends the DataFormat property of the RigidBodyTree object
specified in gik.

Use this initial guess to guide the solver to the target robot configuration. However, the
solution is not guaranteed to be close to this initial guess.

constraintObj,...,constraintObjN — Constraint descriptions
constraint objects

Constraint descriptions defined by the ConstraintInputs property of gik, specified as
one or more of these constraint objects:

• AimingConstraint
• CartesianBounds
• JointPositionBounds
• OrientationTarget
• PoseTarget
• PositionTarget

Output Arguments
configSol — Robot configuration solution
structure array | vector

Robot configuration solution, returned as a structure array or vector. The value of
configSol depends on the DataFormat property of the RigidBodyTree object specified
in gik.

The structure array contains these fields:

• JointName — Character vector for the name of the joint specified in the
RigidBodyTree robot model

• JointPosition — Position of the corresponding joint

The vector output is an array of the joint positions that would be given in
JointPosition for a structure output.

3 Methods — Alphabetical List

3-18

This joint configuration is the computed solution that achieves the target end-effector
pose within the solution tolerance.

solInfo — Solution information
structure

Solution information, returned as a structure containing these fields:

• Iterations — Number of iterations run by the solver.
• NumRandomRestarts — Number of random restarts because the solver got stuck in a

local minimum.
• ConstraintViolation — Information about the constraint, returned as a structure

array. Each structure in the array has these fields:

• Type: Type of the corresponding constraint input, as specified in the
ConstraintInputs property of gik.

• Violation: Vector of constraint violations for the corresponding constraint type.
0 indicates that the constraint is satisfied.

• ExitFlag — Code that gives more details on the solver execution and what caused it
to return. For the exit flags of each solver type, see “Exit Flags”.

• Status — Character vector describing whether the solution is within the tolerance
('success') or outside the tolerance and is the best possible solution that the solver
could find ('best available').

Examples

Solve Generalized Inverse Kinematics for a Set of Constraints

Create a generalized inverse kinematics solver that holds a robotic arm at a specific
location and points toward the robot base. Create the constraint objects to pass the
necessary constraint parameters into the solver.

Load predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Create the System object™ for solving generalized inverse kinematics.

 step

3-19

gik = robotics.GeneralizedInverseKinematics;

Configure the System object to use the KUKA LBR robot.

gik.RigidBodyTree = lbr;

Tell the solver to expect a PositionTarget object and an AimingConstraint object as
the constraint inputs.

gik.ConstraintInputs = {'position','aiming'};

Create the two constraint objects.

1 The origin of the body named tool0 is located at [0.0 0.5 0.5] relative to the
robot's base frame.

2 The z-axis of the body named tool0 points toward the origin of the robot's base
frame.

posTgt = robotics.PositionTarget('tool0');
posTgt.TargetPosition = [0.0 0.5 0.5];

aimCon = robotics.AimingConstraint('tool0');
aimCon.TargetPoint = [0.0 0.0 0.0];

Find a configuration that satisfies the constraints. You must pass the constraint objects
into the System object in the order in which they were specified in the
ConstraintInputs property. Specify an initial guess at the robot configuration.

q0 = homeConfiguration(lbr); % Initial guess for solver
[q,solutionInfo] = gik(q0,posTgt,aimCon);

Visualize the configuration returned by the solver.

show(lbr,q);
title(['Solver status: ' solutionInfo.Status])
axis([-0.75 0.75 -0.75 0.75 -0.5 1])

3 Methods — Alphabetical List

3-20

Plot a line segment from the target position to the origin of the base. The origin of the
tool0 frame coincides with one end of the segment, and its z-axis is aligned with the
segment.

hold on
plot3([0.0 0.0],[0.5 0.0],[0.5 0.0],'--o')
hold off

 step

3-21

• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Plan a Reaching Trajectory With Multiple Kinematic Constraints”

See Also
Classes
AimingConstraint | CartesianBounds | InverseKinematics |
JointPositionBounds | OrientationTarget | PoseTarget | PositionTarget

Topics
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”

3 Methods — Alphabetical List

3-22

“Plan a Reaching Trajectory With Multiple Kinematic Constraints”

Introduced in R2017a

 step

3-23

step
System object: robotics.InverseKinematics
Package: robotics

Joint configurations for desired end-effector pose

Syntax
[configSol,solInfo] = step(ik,endeffector,pose,weights,initialguess)

Description

Note Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

[configSol,solInfo] = step(ik,endeffector,pose,weights,initialguess)
finds a joint configuration that achieves the specified end-effector pose. Specify an initial
guess for the configuration and your desired weights on the tolerances for the six
components of pose. Solution information related to execution of the algorithm,
solInfo, is returned with the joint configuration solution, configSol.

Input Arguments
ik — Inverse kinematics solver
InverseKinematics object

Inverse kinematics solver, specified as an InverseKinematics object.

endeffector — End-effector name
character vector

3 Methods — Alphabetical List

3-24

End-effector name, specified as a character vector. The end effector must be a body on
the RigidBodyTree object specified in ik.

pose — End-effector pose
4-by-4 homogeneous transform

End-effector pose, specified as a 4-by-4 homogeneous transform. This transform defines
the desired position and orientation of the rigid body specified in endeffector.

weights — Weight for pose tolerances
six-element vector

Weight for pose tolerances, specified as a six-element vector. The first three elements
correspond to error in orientation. The last three elements correspond to the error of the
xyz positions.

initialguess — Initial guess of robot configuration
structure array

Initial guess of robot configuration, specified as a structure array. Use this initial guess
to help guide the solver to a desired robot configuration. However, the solution is not
guaranteed to be close to this initial guess.

Output Arguments
configSol — Robot configuration solution
structure array

Robot configuration, returned as a structure array. The structure array contains these
fields:

• JointName — Character vector for the name of the joint specified in the
RigidBodyTree robot model

• JointPosition — Position of the corresponding joint

This joint configuration is the computed solution that achieves the desired end-effector
pose within the solution tolerance.

solInfo — Solution information
structure

 step

3-25

Solution information, returned as a structure. The solution information structure
contains these fields:

• Iterations — Number of iterations run by the algorithm.
• NumRandomRestarts — Number of random restarts because algorithm got stuck in a

local minimum.
• PoseErrorNorm — The magnitude of the pose error for the solution compared to the

desired end effector pose.
• ExitFlag — Code that gives more details on the algorithm execution and what

caused it to return. For the exit flags of each algorithm type, see “Exit Flags”.
• Status — Character vector describing whether the solution is within the tolerance

('success') or the best possible solution the algorithm could find ('best
available').

Examples

Generate Joint Positions to Achieve End-Effector Position

Generate joint positions for a robot model to achieve a desired end-effector position. The
InverseKinematics system object uses inverse kinematic algorithms to solve for valid
joint positions.

Load example robots. The puma1 robot is a RigidBodyTree model of a six-axis robot
arm with six revolute joints.

load exampleRobots.mat
showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)

3 Methods — Alphabetical List

3-26

 6 L6 jnt6 revolute L5(5)

Generate a random configuration. Get the tranformation from the end effector (L6) to the
base for that random configuration. Use this transform as a goal pose of the end effector.
Show this configuration.

randConfig = puma1.randomConfiguration;
tform = getTransform(puma1,randConfig,'L6','base');

show(puma1,randConfig);

Create an InverseKinematics object for the puma1 model. Specify weights for the
different components of the pose. Use a lower magnitude weight for the orientation

 step

3-27

angles than the position components. Use the home configuration of the robot as an
initial guess.

ik = robotics.InverseKinematics('RigidBodyTree',puma1);
weights = [0.25 0.25 0.25 1 1 1];
initialguess = puma1.homeConfiguration;

Calculate the joint positions using the ik object.

[configSoln,solnInfo] = ik('L6',tform,weights,initialguess);

Show the newly generated solution configuration. The solution is a slightly different joint
configuration that achieves the same end-effector position. Multiple calls to the ik object
can give similar or very different joint configurations.

show(puma1,configSoln);

3 Methods — Alphabetical List

3-28

• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree

Topics
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Inverse Kinematics Algorithms”

Introduced in R2016b

 step

3-29

copy
Class: robotics.Joint
Package: robotics

Create copy of joint

Syntax
jCopy = copy(jointObj)

Description
jCopy = copy(jointObj) creates a copy of the Joint object with the same properties.

Input Arguments
jointObj — Joint object
handle

Joint object, specified as a handle. Create a joint object using robotics.Joint.

Output Arguments
jCopy — Joint object
handle

Joint object, returned as a handle. Create a joint object using robotics.Joint. This
copy has the same properties.

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree

3 Methods — Alphabetical List

3-30

Introduced in R2016b

 copy

3-31

setFixedTransform
Class: robotics.Joint
Package: robotics

Set fixed transform properties of joint

Syntax
setFixedTransform(jointObj,tform)

setFixedTransform(jointObj,dhparams,'dh')
setFixedTransform(jointObj,mdhparams,'mdh')

Description
setFixedTransform(jointObj,tform) sets the JointToParentTransform property
of the Joint object directly with the supplied homogenous transformation.

setFixedTransform(jointObj,dhparams,'dh') sets the ChildToJointTransform
property using Denavit-Hartenberg (DH) parameters. The JointToParentTransform
property is set to an identity matrix. DH parameters are given in the order [a alpha d
theta].

The theta input is ignored when specifying the fixed transformation between joints
because that angle is depedent on the joint configuration. For more information, see
“Rigid Body Tree Robot Model”.

setFixedTransform(jointObj,mdhparams,'mdh') sets the
JointToParentTransform property using modified DH parameters. The
ChildToJointTransform property is set to an identity matrix. Modified DH
parameters are given in the order [a alpha d theta].

3 Methods — Alphabetical List

3-32

Input Arguments
jointObj — Joint object
handle

Joint object, specified as a handle. Create a joint object using robotics.Joint.

tform — Homogeneous transform
4-by-4 matrix

Homogeneous transform, specified as a 4-by-4 matrix. The transform is set to the
ChildToJointTransform property. The JointToParentTransform property is set to
an identity matrix.

dhparams — Denavit-Hartenberg (DH) parameters
four-element vector

Denavit-Hartenberg (DH) parameters, specified as a four-element vector, [a alpha d
theta]. These parameters are used to set the ChildToJointTransform property. The
JointToParentTransform property is set to an identity matrix.

The theta input is ignored when specifying the fixed transformation between joints
because that angle is depedent on the joint configuration. For more information, see
“Rigid Body Tree Robot Model”.

mdhparams — Modified Denavit-Hartenberg (DH) parameters
four-element vector

Modified Denavit-Hartenberg (DH) parameters, specified as a four-element vector, [a
alpha d theta]. These parameters are used to set the JointToParentTransform
property. The ChildToJointTransform is set to an identity matrix.

The theta input is ignored when specifying the fixed transformation between joints
because that angle is depedent on the joint configuration. For more information, see
“Rigid Body Tree Robot Model”.

Examples

 setFixedTransform

3-33

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.

dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH

parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

3 Methods — Alphabetical List

3-34

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the
robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)

 setFixedTransform

3-35

 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

3 Methods — Alphabetical List

3-36

References

[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA:
Addison-Wesley, 1989.

[2] Siciliano, Bruno. Robotics: Modelling, Planning and Control. London: Springer, 2009.

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree

 setFixedTransform

3-37

Introduced in R2016b

3 Methods — Alphabetical List

3-38

reset
System object: robotics.MonteCarloLocalization
Package: robotics

Reinitialize MonteCarloLocalization object

Syntax
reset(mcl)

Description
reset(mcl) reinitializes the Monte Carlo localization object, mcl, to the initial values.

Input Arguments
mcl — MonteCarloLocalization object
handle

robotics.MonteCarloLocalization object, specified as an object handle.

Examples

Reset Monte Carlo Localization Object

Create a map and a Monte Carlo localization object.
map = robotics.BinaryOccupancyGrid(10,10,20);
mcl = robotics.MonteCarloLocalization(map);

Create robot data for the range sensor and pose.
ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;

 reset

3-39

angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Initialize particles using step.

[isUpdated,estimatedPose,covariance] = step(mcl,odometryPose,ranges,angles);

Reset the MCL object to reinitialize states.

reset(mcl)

See Also
robotics.MonteCarloLocalization |
robotics.MonteCarloLocalization.getParticles |
robotics.MonteCarloLocalization.step

Topics
“Monte Carlo Localization Algorithm”

Introduced in R2016a

3 Methods — Alphabetical List

3-40

step
System object: robotics.MonteCarloLocalization
Package: robotics

Estimate robot pose and covariance using range data

Syntax
[isUpdated,pose,covariance] = step(mcl,odomPose,ranges,angles)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[isUpdated,pose,covariance] = step(mcl,odomPose,ranges,angles)
estimates the pose and covariance of a robot using the Monte Carlo localization (MCL)
algorithm. The estimates are based on the pose calculated from the specified robot
odometry, odomPose, and the specified range sensor data, ranges and angles. mcl is
the robotics.MonteCarloLocalization object. isUpdated indicates whether the
estimate is updated based on the UpdateThreshold property.

Input Arguments
mcl — MonteCarloLocalization object
handle

robotics.MonteCarloLocalization object, specified as an object handle.

odomPose — Pose based on odometry
three-element vector

 step

3-41

Posed based on odometry, specified as a three-element vector, [x y theta]. This pose is
calculated by integrating the odometry over time.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are
distances from a laser scan sensor at the specified angles. The ranges vector must be
the same length as the corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the
specific angles from a laser scan sensor of the specified ranges. The angles vector must
be the same length as the corresponding ranges vector.

Output Arguments
isUpdated — Flag for pose update
logical

Flag for pose update, returned as a logical. If the change in pose is more than any of the
update thresholds, then the output is returned as true. Otherwise, it is false. The
true output means that updated pose and covariance are returned. The false output
means that pose and covariance are not updated and are the same as at the last update.

pose — Current pose estimate
three-element vector

Current pose estimate, returned as a three-element vector, [x y theta]. The pose is
computed as the mean of the highest weighted cluster of particles.

covariance — Covariance estimate for current pose
matrix

Covariance estimate for current pose, returned as a matrix. This matrix gives an
estimate of the uncertainty of the current pose. The covariance is computed as the
covariance of the highest weighted cluster of particles.

3 Methods — Alphabetical List

3-42

Examples

Estimate Robot Pose from Range Sensor Data

Create a MonteCarloLocalization object, assign a sensor model, and calculate a pose
estimate using the step method.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Create an MCL object.

mcl = robotics.MonteCarloLocalization;

Assign a sensor model with an occupancy grid map to the object.

sm = robotics.LikelihoodFieldSensorModel;
p = zeros(200,200);
sm.Map = robotics.OccupancyGrid(p,20);
mcl.SensorModel = sm;

Create sample laser scan data input.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;
angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Estimate robot pose and covariance.

[isUpdated,estimatedPose,covariance] = mcl(odometryPose,ranges,angles)

isUpdated =

 logical

 1

estimatedPose =

 step

3-43

 0.0343 0.0193 0.0331

covariance =

 0.9467 0.0048 0
 0.0048 0.9025 0
 0 0 1.0011

• “Localize TurtleBot Using Monte Carlo Localization”

See Also
robotics.MonteCarloLocalization |
robotics.MonteCarloLocalization.getParticles

Topics
“Localize TurtleBot Using Monte Carlo Localization”
“Monte Carlo Localization Algorithm”

Introduced in R2016a

3 Methods — Alphabetical List

3-44

checkOccupancy
Class: robotics.OccupancyGrid
Package: robotics

Check locations for free, occupied, or unknown values

Syntax
iOccval = checkOccupancy(map,xy)
iOccval = checkOccupancy(map,ij,'grid')

Description
iOccval = checkOccupancy(map,xy) returns an array of occupancy values at the xy
locations using the OccupiedThreshold and FreeThreshold properties of the map
object. Each row is a separate xy location in the grid to check the occupancy of.
Occupancy values can be obstacle free (0), occupied (1), or unknown (–1).

iOccval = checkOccupancy(map,ij,'grid') specifies ij grid cell indices instead of
xy locations.

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

 checkOccupancy

3-45

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number
of world coordinates.
Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
Data Types: double

Output Arguments
iOccval — Interpreted occupancy values
n-by-1 column vector

Interpreted occupancy values, returned as an n-by-1 column vector equal in length to xy
or ij.

Occupancy values can be obstacle free (0), occupied (1), or unknown (–1). These values
are determined from the actual probability values and the OccupiedThreshold and
FreeThreshold properties of the map object.

Examples

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free
thresholds of the OccupancyGrid object.

Create a matrix and populate it with values. Use this matrix to create an occupancy grid.

p = 0.5*ones(20,20);
p(11:20,11:20) = 0.75*ones(10,10);
map = robotics.OccupancyGrid(p,10);

3 Methods — Alphabetical List

3-46

Get the occupancy of different locations and check their occupancy statuses. The
occupancy status returns 0 for free space and 1 for occupied space. Unknown values
return -1.

pocc = getOccupancy(map,[1.5 1])
occupied = checkOccupancy(map,[1.5 1])

pocc2 = getOccupancy(map,[5 5],'grid')
occupied2 = checkOccupancy(map,[5 5],'grid')

pocc =

 0.7500

occupied =

 1

pocc2 =

 0.5000

occupied2 =

 -1

See Also
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.getOccupancy

Introduced in R2016b

 checkOccupancy

3-47

copy
Class: robotics.OccupancyGrid
Package: robotics

Create copy of occupancy grid

Syntax
copyMap = copy(map)

Description
copyMap = copy(map) creates a deep copy of the OccupancyGrid object with the same
properties.

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

Output Arguments
copyMap — Copied map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. The properties are
the same as the input object, map, but they have a different object handle.

3 Methods — Alphabetical List

3-48

Examples

Copy Occupancy Grid Map

Copy an occupancy grid object. Once copied, the original object can be modified without
affecting the copied map.

Create an occupancy grid with zeros for an empty map.

p = zeros(10);
map = robotics.OccupancyGrid(p);

Copy the occupancy grid map. Modify the original map. The copied map is not modified.
Plot the two maps side by side.

mapCopy = copy(map);
setOccupancy(map,[1:3;1:3]',ones(3,1));
subplot(1,2,1)
show(map)
title('Original map')
subplot(1,2,2)
show(mapCopy)
title('Copied map')

 copy

3-49

See Also
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.getOccupancy |
robotics.OccupancyGrid.occupancyMatrix

Topics
“Occupancy Grids”

Introduced in R2016b

3 Methods — Alphabetical List

3-50

getOccupancy
Class: robotics.OccupancyGrid
Package: robotics

Get occupancy of a location

Syntax
occval = getOccupancy(map,xy)
occval = getOccupancy(map,ij,'grid')

Description
occval = getOccupancy(map,xy) returns an array of probability occupancy values at
the xy locations. Values close to 1 represent a high certainty that the cell contains an
obstacle. Values close to 0 represent certainty that the cell is not occupied and obstacle
free.

occval = getOccupancy(map,ij,'grid') specifies ij grid cell indices instead of xy
locations.

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

 getOccupancy

3-51

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number
of world coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
Data Types: double

Output Arguments
occval — Probability occupancy values
column vector

Probability occupancy values, returned as a column vector the same length as either xy
or ij.

Values close to 0 represent certainty that the cell is not occupied and obstacle free.

Examples

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free
thresholds of the OccupancyGrid object.

Create a matrix and populate it with values. Use this matrix to create an occupancy grid.

p = 0.5*ones(20,20);
p(11:20,11:20) = 0.75*ones(10,10);
map = robotics.OccupancyGrid(p,10);

Get the occupancy of different locations and check their occupancy statuses. The
occupancy status returns 0 for free space and 1 for occupied space. Unknown values
return -1.

3 Methods — Alphabetical List

3-52

pocc = getOccupancy(map,[1.5 1])
occupied = checkOccupancy(map,[1.5 1])

pocc2 = getOccupancy(map,[5 5],'grid')
occupied2 = checkOccupancy(map,[5 5],'grid')

pocc =

 0.7500

occupied =

 1

pocc2 =

 0.5000

occupied2 =

 -1

Insert Laser Scans Into Occupancy Grid

Take range and angle readings from a laser scan and insert these readings into an
occupancy grid.

Create an empty occupancy grid map.

map = robotics.OccupancyGrid(10,10,20);

Insert a laser scan into the occupancy grid. Specify the pose of the robot ranges and
angles and the max range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100, 1);
angles = linspace(-pi/2, pi/2, 100);
maxrange = 20;

 getOccupancy

3-53

insertRay(map,pose,ranges,angles,maxrange);

Show the map to see the results of inserting the laser scan. Check the occupancy of the
spot directly in front of the robot.

show(map)
getOccupancy(map,[8 5])

ans =

 0.7000

3 Methods — Alphabetical List

3-54

Add a second reading and view the update to the occupancy values. The additional
reading increases the confidence in the readings. The free and occupied values become
more distinct.

insertRay(map,pose,ranges,angles,maxrange);
show(map)
getOccupancy(map,[8 5])

ans =

 0.8448

 getOccupancy

3-55

Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16
using a log-odds representation. This data type limits resolution, but saves you memory
when storing large maps in MATLAB. When calling set and then get, the value
returned might not equal the value you set. For more information, see the log-odds
representations section in “Occupancy Grids”.

3 Methods — Alphabetical List

3-56

See Also
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.checkOccupancy

Topics
“Occupancy Grids”

Introduced in R2016b

 getOccupancy

3-57

grid2world
Class: robotics.OccupancyGrid
Package: robotics

Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an
array of world coordinates, xy.

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions. The grid cell locations are counted from the top
left corner of the grid.
Data Types: double

3 Methods — Alphabetical List

3-58

Output Arguments
xy — World coordinates
n-by-2 matrix

World coordinates, returned as an n-by-2 matrix of [x y] pairs, where n is the number
of world coordinates.
Data Types: double

See Also
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.world2grid

Topics
“Occupancy Grids”

Introduced in R2016b

 grid2world

3-59

inflate
Class: robotics.OccupancyGrid
Package: robotics

Inflate each occupied grid location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the specified map by the
radius specified in meters. radius is rounded up to the nearest equivalent cell based on
the resolution of the map. Values are modified using grayscale inflation to inflate higher
probability values across the grid. This inflation increases the size of the occupied
locations in the map.

inflate(map,gridradius,'grid') inflates each occupied position by the
gridradius in number of cells.

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

3 Methods — Alphabetical List

3-60

radius — Dimension that defines by how much to inflate occupied locations
scalar

Dimension that defines by how much to inflate occupied locations, specified as a scalar.
radius is rounded up to the nearest cell value.
Data Types: double

gridradius — Number of cells by which to inflate the occupied locations
positive scalar

Number of cells by which to inflate the occupied locations, specified as a positive scalar.
Data Types: double

Examples

Create and Modify Occupancy Grid

Create a 10m-by-10m empty map.

map = robotics.OccupancyGrid(10,10,10);

Update the occupancy of world locations with specific probability values.

map = robotics.OccupancyGrid(10,10,10);
x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

 inflate

3-61

Inflate occupied areas by a given radius. Larger occupancy values overwrite the smaller
values.

inflate(map,0.5)
figure
show(map)

3 Methods — Alphabetical List

3-62

Get grid locations from world locations.

ij = world2grid(map,[x y]);

Set grid locations to occupied locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)

 inflate

3-63

Definitions

Grayscale Inflation

In grayscale inflation, the strel function creates a circular structuring element using
the inflation radius. The grayscale inflation of A(x, y) by B(x, y) is defined as:

(A⊕B)(x, y) = max {A(x – x′, y’ – y′) +B(x', y') | (x′, y′) ∊ DB}.

DB is the domain of the probability values in the structuring element B. A(x,y) is assumed
to be +∞ outside the domain of the grid.

3 Methods — Alphabetical List

3-64

Grayscale inflation acts as a local maximum operator and finds the highest probability
values for nearby cells. The inflate method uses this definition to inflate the higher
probability values throughout the grid. This inflation increases the size of any occupied
locations and creates a buffer zone for robots to use as they navigate.

See Also
OccupancyGrid | robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.getOccupancy

Topics
“Occupancy Grids”

Introduced in R2016b

 inflate

3-65

insertRay
Class: robotics.OccupancyGrid
Package: robotics

Insert ray from laser scan observation

Syntax
insertRay(map,pose,scan,maxrange)
insertRay(map,pose,ranges,angles,maxrange)
insertRay(map,startpt,endpoints)
insertRay(___ ,invModel)

Description
insertRay(map,pose,scan,maxrange) inserts one or more lidar scan sensor
observations in the occupancy grid, map, using the input lidarScan object, scan, to get
ray endpoints. The ray endpoints are considered free space if the input scan ranges are
below maxrange. Cells observed as occupied are updated with an observation of 0.7. All
other points along the ray are treated as obstacle free and updated with an observation of
0.4. Endpoints above maxrange are not updated. NaN values are ignored. This behavior
correlates to the inverse sensor model.

insertRay(map,pose,ranges,angles,maxrange) specifies the range readings as
vectors, ranges and angles.

insertRay(map,startpt,endpoints) inserts observations between the line segments
from the start point to the end points. The endpoints are updated with a probability
observation of 0.7. Cells along the line segments are updated with an observation of 0.4.

insertRay(___ ,invModel) inserts rays with updated probabilities given in the two-
element vector, invModel, that corresponds to obstacle-free and occupied observations.
Use any of the previous syntaxes to input the rays.

3 Methods — Alphabetical List

3-66

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

pose — Position and orientation of robot
[x y theta] vector

Position and orientation of robot, specified as an [x y theta] vector. The robot pose is
an x and y position with angular orientation (in radians) measured from the x-axis.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector of scalars

Range values from scan data, specified as a vector of scalars in meters. These range
values are distances from a sensor at given angles. The vector must be the same length
as the corresponding angles vector.

angles — Angle values from scan data
vector of scalars

Angle values from scan data, specified as a vector of scalars in radians. These angle
values are the specific angles of the given ranges. The vector must be the same length as
the corresponding ranges vector.

maxrange — Maximum range of sensor
scalar

 insertRay

3-67

Maximum range of laser range sensor, specified as a scalar. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to
maxrange.

startpt — Start point for rays
two-element vector

Start point for rays, specified as a two-element vector, [x y], in the world coordinate
frame. All rays are line segments that originate at this point.

endpoints — Endpoints for rays
n-by-2 matrix

Endpoints for rays, specified as an n-by-2 matrix, [x y], in the world coordinate frame,
where n is the length of ranges or angles. All rays are line segments that originate at
startpt.

invModel — Inverse sensor model values
two-element vector

Inverse sensor model values, specified as a two-element vector corresponding to obstacle-
free and occupied probabilities. Points along the ray are updated according to the inverse
sensor model and the specified range readings. NaN range values are ignored. Range
values greater than maxrange are not updated. See “Inverse Sensor Model” on page 3-
71.

Examples

Insert Laser Scans Into Occupancy Grid

Take range and angle readings from a laser scan and insert these readings into an
occupancy grid.

Create an empty occupancy grid map.

map = robotics.OccupancyGrid(10,10,20);

Insert a laser scan into the occupancy grid. Specify the pose of the robot ranges and
angles and the max range of the laser scan.

3 Methods — Alphabetical List

3-68

pose = [5,5,0];
ranges = 3*ones(100, 1);
angles = linspace(-pi/2, pi/2, 100);
maxrange = 20;

insertRay(map,pose,ranges,angles,maxrange);

Show the map to see the results of inserting the laser scan. Check the occupancy of the
spot directly in front of the robot.

show(map)
getOccupancy(map,[8 5])

ans =

 0.7000

 insertRay

3-69

Add a second reading and view the update to the occupancy values. The additional
reading increases the confidence in the readings. The free and occupied values become
more distinct.

insertRay(map,pose,ranges,angles,maxrange);
show(map)
getOccupancy(map,[8 5])

ans =

 0.8448

3 Methods — Alphabetical List

3-70

Definitions

Inverse Sensor Model

The inverse sensor model determines how values are set along a ray from a range sensor
reading to the obstacles in the map. You can customize this model by specifying different
probabilities for free and occupied locations in the invModel argument. NaN range
values are ignored. Range values greater than maxrange are not updated.

 insertRay

3-71

Grid locations that contain range readings are updated with the occupied probability.
Locations before the reading are updated with the free probability. All locations after the
reading are not updated.

See Also
lidarScan | robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.raycast

Topics
“Occupancy Grids”

3 Methods — Alphabetical List

3-72

Introduced in R2016b

 insertRay

3-73

occupancyMatrix
Class: robotics.OccupancyGrid
Package: robotics

Convert occupancy grid to double matrix

Syntax
mat = occupancyMatrix(map)
mat = occupancyMatrix(map,'ternary')

Description
mat = occupancyMatrix(map) returns probability values stored in the occupancy grid
object as a matrix.

mat = occupancyMatrix(map,'ternary') returns the occupancy status of each grid
cell as a matrix. The OccupiedThreshold and FreeThreshold properties on the
occupancy grid determine the obstacle free cells (0) and occupied cells (1). Unknown
values are returned as –1.

Input Arguments
map — Map representation
OccupancyGrid object

Map representation, specified as a robotics.OccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with values
representing the probability of the occupancy of that cell. Values close to 1 represent a
high certainty that the cell contains an obstacle. Values close to 0 represent certainty
that the cell is not occupied and obstacle free.

3 Methods — Alphabetical List

3-74

Output Arguments
mat — Occupancy grid values
matrix

Occupancy grid values, returned as an h-by-w matrix, where h and w are defined by the
two elements of the GridSize property of the occupancy grid object.

See Also
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyGrid.getOccupancy | robotics.OccupancyGrid.show

Topics
“Occupancy Grids”

Introduced in R2016b

 occupancyMatrix

3-75

raycast
Class: robotics.OccupancyGrid
Package: robotics

Compute cell indices along a ray

Syntax
[endpoints,midpoints] = raycast(map,pose,range,angle)
[endpoints,midpoints] = raycast(map,p1,p2)

Description
[endpoints,midpoints] = raycast(map,pose,range,angle) returns cell indices
of the specified map for all cells traversed by a ray originating from the specified pose at
the specified angle and range values. endpoints contains all indices touched by the
end of the ray, with all other points included in midpoints.

[endpoints,midpoints] = raycast(map,p1,p2) returns the cell indices of the line
segment between the two specified points.

Examples

Get Grid Cells Along A Ray

Use the raycast method to generate cell indices for all cells traversed by a ray.

Create an empty map. A low resolution map is used to illustrate the affect of grid
locations.

map = robotics.OccupancyGrid(10,10,1);
show(map)

3 Methods — Alphabetical List

3-76

Get the grid indices of the midpoints and end points of a ray from p1 to p2. Set
occupancy values for these grid indices. Midpoints are treated as open space. Endpoints
are updated with an occupied observation.

p1 = [2 3];
p2 = [8.5 8];
[endPts,midPts] = raycast(map,p1,p2);
setOccupancy(map,midPts,zeros(length(midPts),1),'grid');
setOccupancy(map,endPts,ones(length(endPts),1),'grid');

Plot the original ray over the map. Notice that each grid cell touched by the line is
updated. The starting point overlaps multiple cells and the line touches the edge of
certain cells, but all the cells are still updated.

 raycast

3-77

b has the same number of elements and is the same size and class of a. b is the same
class as a. If a is empty, b is also empty. If a is heterogeneous, b is also heterogeneous. If
a contains deleted handles, then copy creates deleted handles of the same class in b.
Dynamic properties and listeners associated with objects in a are not copied to objects in
b.

See Also
robotics.ParticleFilter

Topics
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a

 copy

3-123

correct
Class: robotics.ParticleFilter
Package: robotics

Adjust state estimate based on sensor measurement

Syntax
[stateCorr,stateCov] = correct(pf,measurement)
[stateCorr,stateCov] = correct(pf,measurement,varargin)

Description
[stateCorr,stateCov] = correct(pf,measurement) calculates the corrected
system state and its associated uncertainty covariance based on a sensor measurement
at the current time step. correct uses the MeasurementLikelihoodFcn property from
the particle filter object, pf, as a function to calculate the likelihood of the sensor
measurement for each particle. The two inputs to the MeasurementLikelihoodFcn
function are:

1 pf – The ParticleFilter object, which contains the particles of the current
iteration

2 measurement – The sensor measurements used to correct the state estimate

The MeasurementLikelihoodFcn function then extracts the best state estimate and
covariance based on the setting in the StateEstimationMethod property.

[stateCorr,stateCov] = correct(pf,measurement,varargin) passes all
additional arguments in varargin to the underlying MeasurementLikelihoodFcn
after the first three required inputs.

3 Methods — Alphabetical List

3-124

Input Arguments
pf — ParticleFilter object
handle

ParticleFilter object, specified as a handle. See robotics.ParticleFilter for
more information.

measurement — Sensor measurements
array

Sensor measurements, specified as an array. This input is passed directly into the
MeasurementLikelihoodFcn property of pf. It is used to calculate the likelihood of the
sensor measurement for each particle.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is
passed directly into the MeasurementLikelihoodFcn property of pf. It is used to
calculate the likelihood of the sensor measurement for each particle. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,measurement,arg1,arg2)

Output Arguments
stateCorr — Corrected system state
vector with length NumStateVariables

Corrected system state, returned as a row vector with length NumStateVariables. The
corrected state is calculated based on the StateEstimationMethod algorithm and the
MeasurementLikelihoodFcn.

stateCov — Corrected system covariance
N-by-N matrix | []

 correct

3-125

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the function
returns stateCov as [].

Examples

Particle Filter Prediction and Correction

Create a ParticleFilter object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value
of StateTransitionFcn. It then corrects the state based on a given measurement and
the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = robotics.ParticleFilter

pf =

 ParticleFilter with properties:

 NumStateVariables: 3
 NumParticles: 1000
 StateTransitionFcn: @robotics.algs.gaussianMotion
 MeasurementLikelihoodFcn: @robotics.algs.fullStateMeasurement
 IsStateVariableCircular: [0 0 0]
 ResamplingPolicy: [1x1 robotics.ResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'row'
 Particles: [1000x3 double]
 Weights: [1000x1 double]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

3 Methods — Alphabetical List

3-126

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst =

 4.1562 0.9185 9.0202

• “Track a Car-Like Robot Using Particle Filter”

See Also
robotics.ParticleFilter | robotics.ParticleFilter.getStateEstimate |
robotics.ParticleFilter.initialize | robotics.ParticleFilter.predict

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a

 correct

3-127

getStateEstimate
Class: robotics.ParticleFilter
Package: robotics

Extract best state estimate and covariance from particles

Syntax
stateEst = getStateEstimate(pf)
[stateEst,stateCov] = getStateEstimate(pf)

Description
stateEst = getStateEstimate(pf) returns the best state estimate based on the
current set of particles. The estimate is extracted based on the
StateEstimationMethod property from the ParticleFilter object, pf.

[stateEst,stateCov] = getStateEstimate(pf) also returns the covariance
around the state estimate. The covariance is a measure of the uncertainty of the state
estimate. Not all state estimate methods support covariance output. In this case,
getStateEstimate returns stateCov as [].

Input Arguments
pf — ParticleFilter object
handle

ParticleFilter object, specified as a handle. See robotics.ParticleFilter for
more information.

3 Methods — Alphabetical List

3-128

Output Arguments
stateEst — Best state estimate
vector

Best state estimate, returned as a row vector with length NumStateVariables. The
estimate is extracted based on the StateEstimationMethod algorithm specified in pf.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the function
returns stateCov as [].

Examples

Particle Filter Prediction and Correction

Create a ParticleFilter object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value
of StateTransitionFcn. It then corrects the state based on a given measurement and
the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = robotics.ParticleFilter

pf =

 ParticleFilter with properties:

 NumStateVariables: 3
 NumParticles: 1000
 StateTransitionFcn: @robotics.algs.gaussianMotion
 MeasurementLikelihoodFcn: @robotics.algs.fullStateMeasurement

 getStateEstimate

3-129

 IsStateVariableCircular: [0 0 0]
 ResamplingPolicy: [1x1 robotics.ResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'row'
 Particles: [1000x3 double]
 Weights: [1000x1 double]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst =

 4.1562 0.9185 9.0202

• “Track a Car-Like Robot Using Particle Filter”

See Also
robotics.ParticleFilter | robotics.ParticleFilter.correct |
robotics.ParticleFilter.initialize | robotics.ParticleFilter.predict

3 Methods — Alphabetical List

3-130

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a

 getStateEstimate

3-131

initialize
Class: robotics.ParticleFilter
Package: robotics

Initialize the state of the particle filter

Syntax
initialize(pf,numParticles,mean,covariance)
initialize(pf,numParticles,stateBounds)
initialize(___ ,Name,Value)

Description
initialize(pf,numParticles,mean,covariance) initializes the particle filter
object, pf, with a specified number of particles, numParticles. The initial states of the
particles in the state space are determined by sampling from the multivariate normal
distribution with the specified mean and covariance.

initialize(pf,numParticles,stateBounds) determines the initial location of the
particles by sample from the multivariate uniform distribution within the specified
stateBounds.

initialize(___ ,Name,Value) initializes the particles with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
pf — ParticleFilter object
handle

ParticleFilter object, specified as a handle. See robotics.ParticleFilter for
more information.

3 Methods — Alphabetical List

3-132

numParticles — Number of particles used in the filter
scalar

Number of particles used in the filter, specified as a scalar.

mean — Mean of particle distribution
vector

Mean of particle distribution, specified as a vector. The NumStateVariables property of
pf is set based on the length of this vector.

covariance — Covariance of particle distribution
N-by-N matrix

Covariance of particle distribution, specified as an N-by-N matrix, where N is the value
of NumStateVariables property from pf.

stateBounds — Bounds of state variables
n-by-2 matrix

Bounds of state variables, specified as an n-by-2 matrix. The NumStateVariables
property of pf is set based on the value of n. Each row corresponds to the lower and
upper limit of the corresponding state variable.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CircularVariables — Circular variables
logical vector

Circular variables, specified as a logical vector. Each state variable that uses circular or
angular coordinates is indicated with a 1. The length of the vector is equal to the
NumStateVariables property of pf.

Examples

 initialize

3-133

Particle Filter Prediction and Correction

Create a ParticleFilter object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value
of StateTransitionFcn. It then corrects the state based on a given measurement and
the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = robotics.ParticleFilter

pf =

 ParticleFilter with properties:

 NumStateVariables: 3
 NumParticles: 1000
 StateTransitionFcn: @robotics.algs.gaussianMotion
 MeasurementLikelihoodFcn: @robotics.algs.fullStateMeasurement
 IsStateVariableCircular: [0 0 0]
 ResamplingPolicy: [1x1 robotics.ResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'row'
 Particles: [1000x3 double]
 Weights: [1000x1 double]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

3 Methods — Alphabetical List

3-134

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst =

 4.1562 0.9185 9.0202

• “Track a Car-Like Robot Using Particle Filter”

See Also
robotics.ParticleFilter.correct |
robotics.ParticleFilter.getStateEstimate |
robotics.ParticleFilter.predict | robotics.ParticleFilter.predict

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a

 initialize

3-135

predict
Class: robotics.ParticleFilter
Package: robotics

Predict state of robot in next time step

Syntax
[statePred,stateCov] = predict(pf)
[statePred,stateCov] = predict(pf,varargin)

Description
[statePred,stateCov] = predict(pf) calculates the predicted system state and its
associated uncertainty covariance. predict uses the StateTransitionFcn property of
ParticleFilter object, pf, to evolve the state of all particles. It then extracts the best
state estimate and covariance based on the setting in the StateEstimationMethod
property.

[statePred,stateCov] = predict(pf,varargin) passes all additional arguments
specified in varargin to the underlying StateTransitionFcn property of pf. The first
input to StateTransitionFcn is the set of particles from the previous time step,
followed by all arguments in varargin.

Input Arguments
pf — ParticleFilter object
handle

ParticleFilter object, specified as a handle. See robotics.ParticleFilter for
more information.

varargin — Variable-length input argument list
comma-separated list

3 Methods — Alphabetical List

3-136

Variable-length input argument list, specified as a comma-separated list. This input is
passed directly into the StateTransitionFcn property of pf to evolve the system state
for each particle. When you call:

predict(pf,arg1,arg2)

MATLAB essentially calls the stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

Output Arguments
statePred — Predicted system state
vector

Predicted system state, returned as a vector with length NumStateVariables. The
predicted state is calculated based on the StateEstimationMethod algorithm.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the function
returns stateCov as [].

Examples

Particle Filter Prediction and Correction

Create a ParticleFilter object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value
of StateTransitionFcn. It then corrects the state based on a given measurement and
the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

 predict

3-137

pf = robotics.ParticleFilter

pf =

 ParticleFilter with properties:

 NumStateVariables: 3
 NumParticles: 1000
 StateTransitionFcn: @robotics.algs.gaussianMotion
 MeasurementLikelihoodFcn: @robotics.algs.fullStateMeasurement
 IsStateVariableCircular: [0 0 0]
 ResamplingPolicy: [1x1 robotics.ResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'row'
 Particles: [1000x3 double]
 Weights: [1000x1 double]
 State: 'Use the getStateEstimate function to see the value.'
 StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst =

3 Methods — Alphabetical List

3-138

 4.1562 0.9185 9.0202

• “Track a Car-Like Robot Using Particle Filter”

See Also
robotics.ParticleFilter | robotics.ParticleFilter.correct |
robotics.ParticleFilter.getStateEstimate |
robotics.ParticleFilter.initialize

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a

 predict

3-139

findpath
Class: robotics.PRM
Package: robotics

Find path between start and goal points on roadmap

Syntax
xy = findpath(prm,start,goal)

Description
xy = findpath(prm,start,goal) finds an obstacle-free path between start and
goal locations within prm, a roadmap object that contains a network of connected points.

If any properties of prm change, or if the roadmap is not created, update is called.

Input Arguments
prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

start — Start location of path
2-by-1 vector

Start location of path, specified as a 2-by-1 vector representing an [x y] pair.
Example: [0 0]

goal — Final location of path
2-by-1 vector

Final location of path, specified as a 2-by-1 vector representing an [x y] pair.

3 Methods — Alphabetical List

3-140

Example: [10 10]

Output Arguments
xy — Waypoints for a path between start and goal
2-by-n column vector

Waypoints for a path between start and goal, specified as a 2-by-n column vector of [x
y] pairs, where n is the number of waypoints. These pairs represent the solved path from
the start and goal locations, given the roadmap from the prm input object.

See Also
robotics.PRM | robotics.PRM.show | robotics.PRM.update

Introduced in R2015a

 findpath

3-141

show
Class: robotics.PRM
Package: robotics

Show map, roadmap, and path

Syntax
show(prm)
show(prm,Name,Value)

Description
show(prm) shows the map and the roadmap, specified as prm in a figure window. If no
roadmap exists, update is called. If a path is computed before calling show, the path is
also plotted on the figure.

show(prm,Name,Value) sets the specified Value to the property Name.

Input Arguments
prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

3 Methods — Alphabetical List

3-142

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as a comma-separated pair consisting of 'Parent' and
either an Axes or UIAxesobject. See axes or uiaxes.

Map — Map display option
'on' (default) | 'off'

Map display option, specified as the comma-separated pair consisting of 'Map' and
either 'on' or 'off'.

Roadmap — Roadmap display option
‘on’ (default) | 'off'

Roadmap display option, specified as the comma-separated pair consisting of 'Roadmap'
and either 'on' or 'off'.

Path — Path display option
'on' (default) | 'off'

Path display option, specified as 'on' or 'off'. This controls whether the computed
path is shown in the plot.

See Also
robotics.PRM | robotics.PRM.findpath | robotics.PRM.update

Topics
“Path Following for a Differential Drive Robot”

Introduced in R2015a

 show

3-143

update
Class: robotics.PRM
Package: robotics

Create or update roadmap

Syntax
update(prm)

Description
update(prm) creates a roadmap if called for the first time after creating the PRM object,
prm. Subsequent calls of update recreate the roadmap by resampling the map. update
creates the new roadmap using the Map, NumNodes, and ConnectionDistance property
values specified in prm.

Input Arguments
prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

See Also
robotics.PRM | robotics.PRM.findpath | robotics.PRM.show

Introduced in R2015a

3 Methods — Alphabetical List

3-144

reset
System object: robotics.PurePursuit
Package: robotics

Reset internal states to default

Syntax
reset(controller)

Description
reset(controller) resets the internal system properties of the controller object.
All properties specific to the PurePursuit object are kept the same and the locked
status of the object does not change.

Input Arguments
controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

See Also
robotics.PurePursuit

Introduced in R2015a

 reset

3-145

step
System object: robotics.PurePursuit
Package: robotics

Compute linear and angular velocity control commands

Syntax
[vel,angvel] = step(controller,pose)
[vel,angvel,lookaheadpoint] = step(controller,pose)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[vel,angvel] = step(controller,pose) processes the robot’s position and
orientation, pose, as [x y theta], and outputs the linear velocity, vel, and angular
velocity, angvel, based on the specified controller .

[vel,angvel,lookaheadpoint] = step(controller,pose) returns the look-
ahead point, which is a location on the path used to compute the velocity commands. This
location on the path is computed using the LookaheadDistance property on the
controller object.

Input Arguments
controller — Pure pursuit controller
PurePursuit object

3 Methods — Alphabetical List

3-146

Pure pursuit controller, specified as a PurePursuit object.

pose — Position and orientation of robot
3-by-1 vector in the form [x y theta]

Position and orientation of robot, specified as a 3-by-1 vector in the form [x y theta].
The robot’s pose is an x and y position with angular orientation (in radians) measured
from the x-axis.

Output Arguments
vel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

lookaheadpoint — Look-ahead point on path
[x y] vector

Look-ahead point on the path, returned as an [x y] vector. This value is calculated
based on the LookaheadDistance property on the controller object.

See Also
robotics.PurePursuit

Introduced in R2015a

 step

3-147

addVisual
Class: robotics.RigidBody
Package: robotics

Add visual geometry data to rigid body

Syntax
addVisual(body,'Mesh',filename)
addVisual(body,'Mesh',filename,tform)

Description
addVisual(body,'Mesh',filename) adds a polygon mesh on top of any current
visual geometry using the specified .stl file, filename. Mutliple visual geometries can
be added to a single body. The coordinate frame is assumed to coincide with the frame of
body. You can view the meshes for an entire rigid body tree using
robotics.RigidBodyTree.show.

addVisual(body,'Mesh',filename,tform) specifies a homogeneous transformation
for the polygon mesh relative to the body frame.

Input Arguments
body — RigidBody object
handle

RigidBody object, specified as a handle. Create a rigid body object using
robotics.RigidBody.

filename — .stl file name
character vector

.stl file name, specified as a character vector.

3 Methods — Alphabetical List

3-148

tform — Polygon mesh transformation
4-by-4 homogeneous transformation

Mesh transformation relative to the body coordinate frame, specified as a 4-by-4
homogeneous transformation.

See Also
robotics.RigidBody.clearVisual | robotics.RigidBodyTree |
robotics.RigidBodyTree.show

Introduced in R2017b

 addVisual

3-149

clearVisual
Class: robotics.RigidBody
Package: robotics

Clear all visual geometries

Syntax
clearVisual(body)

Description
clearVisual(body) clears all visual geometries attached to the given rigid body object.

Input Arguments
body — RigidBody object
handle

RigidBody object, specified as a handle. Create a rigid body object using
robotics.RigidBody.

See Also
robotics.RigidBody.addVisual | robotics.RigidBodyTree |
robotics.RigidBodyTree.show

Introduced in R2017b

3 Methods — Alphabetical List

3-150

copy
Class: robotics.RigidBody
Package: robotics

Create a deep copy of rigid body

Syntax
copyObj = copy(bodyObj)

Description
copyObj = copy(bodyObj) creates a copy of the rigid body object with the same
properties.

Input Arguments
bodyObj — RigidBody object
handle

RigidBody object, specified as a handle. Create a rigid body object using
robotics.RigidBody.

Output Arguments
copyObj — RigidBody object
handle

RigidBody object, returned as a handle. Create a rigid body object using
robotics.RigidBody.

 copy

3-151

See Also
robotics.Joint | robotics.RigidBodyTree

Introduced in R2016b

3 Methods — Alphabetical List

3-152

addBody
Class: robotics.RigidBodyTree
Package: robotics

Add a body to robot

Syntax
addBody(robot,body,parentname)

Description
addBody(robot,body,parentname) adds a rigid body to the robot object and is
attached to the rigid body parent specified by parentname. The body.Joint property
defines how this body moves relative to the parent body.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

body — Rigid body
RigidBody object

Rigid body, specified as a RigidBody object.

parentname — Parent body name
character vector

Parent body name, specified as a character vector. This parent body must already exist in
the robot model. The new body is attached to this parent body.

 addBody

3-153

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each RigidBody object
contains a Joint object and must be added to the RigidBodyTree using addBody.

Create a rigid body tree.

rbtree = robotics.RigidBodyTree;

Create a rigid body with a unique name.

body1 = robotics.RigidBody('b1');

Create a revolute joint. By default, the RigidBody object comes with a fixed joint.
Replace the joint by assigning a new Joint object to the body1.Joint property.

jnt1 = robotics.Joint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid
body to. Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

Robot: (1 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 b1 jnt1 revolute base(0)

3 Methods — Alphabetical List

3-154

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.

dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH

parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

 addBody

3-155

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the
robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)

3 Methods — Alphabetical List

3-156

 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

 addBody

3-157

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}

3 Methods — Alphabetical List

3-158

 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.

newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.

subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

 addBody

3-159

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.removeBody
| robotics.RigidBodyTree.replaceBody

Introduced in R2016b

3 Methods — Alphabetical List

3-160

addSubtree
Class: robotics.RigidBodyTree
Package: robotics

Add subtree to robot

Syntax
addSubtree(robot,parentname,subtree)

Description
addSubtree(robot,parentname,subtree) attaches the robot model, subtree, to an
existing robot model, robot, at the body specified by parentname. The subtree base is
not added as a body.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

parentname — Parent body name
character vector

Parent body name, specified as a character vector. This parent body must already exist in
the robot model. The new body is attached to this parent body.

subtree — Subtree robot model
RigidBodyTree object

Subtree robot model, specified as a RigidBodyTree object.

 addSubtree

3-161

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1

3 Methods — Alphabetical List

3-162

 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}
 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.
newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.
subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'

 addSubtree

3-163

 Gravity: [0 0 0]
 DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.addBody |
robotics.RigidBodyTree.removeBody | robotics.RigidBodyTree.replaceBody

Introduced in R2016b

3 Methods — Alphabetical List

3-164

centerOfMass
Class: robotics.RigidBodyTree
Package: robotics

Center of mass position and Jacobian

Syntax
com = centerOfMass(robot)
com = centerOfMass(robot,configuration)
[com,comJac] = centerOfMass(robot,configuration)

Description
com = centerOfMass(robot) computes the center of mass position of the robot model
at its home configuration, relative to the base frame.

com = centerOfMass(robot,configuration) computes the center of mass position
of the robot model at the specified joint configuration, relative to the base frame.

[com,comJac] = centerOfMass(robot,configuration) also returns the center of
mass Jacobian, which relates the center of mass velocity to the joint velocities.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the centerOfMass function,
set the DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

 centerOfMass

3-165

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the
vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

Output Arguments
com — Center of mass location
[x y z] vector

Center of mass location, returned as an [x y z] vector. The vector describes the
location of the center of mass for the specified configuration relative to the body
frame, in meters.

comJac — Center of mass Jacobian
3-by-n matrix

Center of mass Jacobian, returned as a 3-by-n matrix, where n is the robot velocity
degrees of freedom.

Examples

Calculate Center of Mass and Jacobian for Robot Configuration

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Compute the center of mass position and Jacobian at the home configuration of the robot.

3 Methods — Alphabetical List

3-166

[comLocation,comJac] = centerOfMass(lbr);

See Also
RigidBodyTree | gravityTorque | massMatrix | velocityProduct

Introduced in R2017a

 centerOfMass

3-167

copy
Class: robotics.RigidBodyTree
Package: robotics

Copy robot model

Syntax
newrobot = copy(robot)

Description
newrobot = copy(robot) creates a deep copy of robot with the same properties. Any
changes in newrobot are not reflected in robot.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

Output Arguments
newrobot — Robot model
RigidBodyTree object

Robot model, returned as a RigidBodyTree object.

Examples

3 Methods — Alphabetical List

3-168

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}

 copy

3-169

 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.

newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.

subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

3 Methods — Alphabetical List

3-170

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree

Introduced in R2016b

 copy

3-171

externalForce
Class: robotics.RigidBodyTree
Package: robotics

Compose external force matrix relative to base

Syntax
fext = externalForce(robot,bodyname,wrench)
fext = externalForce(robot,bodyname,wrench,configuration)

Description
fext = externalForce(robot,bodyname,wrench) composes the external force
matrix, which you can use as inputs to inverseDynamics and forwardDynamics to
apply an external force, wrench, to the body specified by bodyname. The wrench input is
assumed to be in the base frame.

fext = externalForce(robot,bodyname,wrench,configuration) composes the
external force matrix assuming that wrench is in the bodyname frame for the specified
configuration. The force matrix fext is given in the base frame.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the externalForce function,
set the DataFormat property to either 'row' or 'column'.

bodyname — Name of body to which external force is applied
character vector

3 Methods — Alphabetical List

3-172

Name of body to which the external force is applied, specified as a character vector. This
body name must match a body on the robot object.

wrench — Torques and forces applied to body
[Tx Ty Tz Fx Fy Fz] vector

Torques and forces applied to the body, specified as a [Tx Ty Tz Fx Fy Fz] vector.
The first three elements of the wrench correspond to the moments around xyz-axes. The
last three elements are linear forces along the same axes. Unless you specify the robot
configuration, the wrench is assumed to be relative to the base frame.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the
vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

Output Arguments
fext — External force matrix
n-by-6 matrix | 6-by-n matrix

External force matrix, returned as either an n-by-6 or 6-by-n matrix, where n is the
velocity number (degrees of freedom) of the robot. The shape depends on the
DataFormat property of robot. The 'row' data format uses an n-by-6 matrix. The
'column' data format uses a 6-by-n .

The composed matrix lists only values other than zero at the locations relevant to the
body specified. You can add force matrices together to specify multiple forces on multiple
bodies. Use the external force matrix to specify external forces to dynamics functions
inverseDynamics and forwardDynamics.

Examples

 externalForce

3-173

Compute Forward Dynamics Due to External Forces on Rigid Body Tree Model

Calculate the resultant joint accelerations for a given robot configuration with applied
external forces and forces due to gravity. A wrench is applied to a specific body with the
gravity being specified for the whole robot.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.
load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the gravity. By default, gravity is assumed to be zero.
lbr.Gravity = [0 0 -9.81];

Get the home configuration for the lbr robot.

q = homeConfiguration(lbr);

Specify the wrench vector that represents the external forces experienced by the robot.
Use the externalForce function to generate the external force matrix. Specify the robot
model, the end effector that experiences the wrench, the wrench vector, and the current
robot configuration. wrench is given relative to the 'tool0' body frame, which requires
you to specify the robot configuration, q.

wrench = [0 0 0.5 0 0 0.3];
fext = externalForce(lbr,'tool0',wrench,q);

Compute the resultant joint accelerations due to gravity, with the external force applied
to the end-effector 'tool0' when lbr is at its home configuration. The joint velocities
and joint torques are assumed to be zero (input as an empty vector []).

qddot = forwardDynamics(lbr,q,[],[],fext);

Compute Joint Torque to Counter External Forces

Use the externalForce function to generate force matrices to apply to a rigid body tree
model. The force matrix is an m-by-6 vector that has a row for each joint on the robot to

3 Methods — Alphabetical List

3-174

apply a six-element wrench. Use the externalForce function and specify the end
effector to properly assign the wrench to the correct row of the matrix. You can add
multiple force matrices together to apply multiple forces to one robot.

To calculate the joint torques that counter these external forces, use the
inverseDynamics funnction.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for lbr.

q = homeConfiguration(lbr);

Set external force on link1. The input wrench vector is expressed in the base frame.

fext1 = externalForce(lbr,'link_1',[0 0 0.0 0.1 0 0]);

Set external force on the end effector, tool0. The input wrench vector is expressed in the
tool0 frame.

fext2 = externalForce(lbr,'tool0',[0 0 0.0 0.1 0 0],q);

Compute the joint torques required to balance the external forces. To combine the forces,
add the force matrices together. Joint velocities and accelerations are assumed to be zero
(input as []).

tau = inverseDynamics(lbr,q,[],[],fext1+fext2);

• “Control LBR Manipulator Motion Through Joint Torque Commands”

 externalForce

3-175

See Also
RigidBodyTree | forwardDynamics | inverseDynamics

Topics
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2017a

3 Methods — Alphabetical List

3-176

forwardDynamics
Class: robotics.RigidBodyTree
Package: robotics

Joint accelerations given joint torques and states

Syntax
jointAccel = forwardDynamics(robot)
jointAccel = forwardDynamics(robot,configuration)
jointAccel = forwardDynamics(robot,configuration,jointVel)
jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq)
jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq,
fext)

Description
jointAccel = forwardDynamics(robot) computes joint accelerations due to gravity
at the robot home configuration, with zero joint velocities and no external forces.

jointAccel = forwardDynamics(robot,configuration) also specifies the joint
positions of the robot configuration.

jointAccel = forwardDynamics(robot,configuration,jointVel) also specifies
the joint velocities of the robot.

jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq)
also specifies the joint torques applied to the robot.

jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq,
fext) also specifies an external force matrix that contains forces applied to each joint.

To specify the home configuration, zero joint velocities, or zero torques, use [] for that
input argument.

 forwardDynamics

3-177

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the forwardDynamics
function, set the DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the
vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

jointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the
velocity degrees of freedom of the robot. To use the vector form of jointVel, set the
DataFormat property for the robot to either 'row' or 'column' .

jointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a
specific joint. To use the vector form of jointTorq, set the DataFormat property for the
robot to either 'row' or 'column' .

fext — External force matrix
n-by-6 matrix | 6-by-n matrix

External force matrix, specified as either an n-by-6 or 6-by-n matrix, where n is the
velocity degrees of freedom of the robot. The shape depends on the DataFormat property
of robot. The 'row' data format uses an n-by-6 matrix. The 'column' data format uses
a 6-by-n .

3 Methods — Alphabetical List

3-178

The matrix lists only values other than zero at the locations relevant to the body
specified. You can add force matrices together to specify multiple forces on multiple
bodies.

To create the matrix for a specified force or torque, see externalForce.

Output Arguments
jointAccel — Joint accelerations
vector

Joint accelerations, returned as a vector. The dimension of the joint accelerations vector
is equal to the velocity degrees of freedom of the robot. Each element corresponds to a
specific joint on the robot.

Examples

Compute Forward Dynamics Due to External Forces on Rigid Body Tree Model

Calculate the resultant joint accelerations for a given robot configuration with applied
external forces and forces due to gravity. A wrench is applied to a specific body with the
gravity being specified for the whole robot.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the gravity. By default, gravity is assumed to be zero.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for the lbr robot.

 forwardDynamics

3-179

q = homeConfiguration(lbr);

Specify the wrench vector that represents the external forces experienced by the robot.
Use the externalForce function to generate the external force matrix. Specify the robot
model, the end effector that experiences the wrench, the wrench vector, and the current
robot configuration. wrench is given relative to the 'tool0' body frame, which requires
you to specify the robot configuration, q.

wrench = [0 0 0.5 0 0 0.3];
fext = externalForce(lbr,'tool0',wrench,q);

Compute the resultant joint accelerations due to gravity, with the external force applied
to the end-effector 'tool0' when lbr is at its home configuration. The joint velocities
and joint torques are assumed to be zero (input as an empty vector []).

qddot = forwardDynamics(lbr,q,[],[],fext);

• “Control LBR Manipulator Motion Through Joint Torque Commands”

See Also
RigidBodyTree | externalForce | inverseDynamics

Topics
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2017a

3 Methods — Alphabetical List

3-180

geometricJacobian
Class: robotics.RigidBodyTree
Package: robotics

Geometric Jacobian for robot configuration

Syntax
jacobian = geometricJacobian(robot,configuration,endeffectorname)

Description
jacobian = geometricJacobian(robot,configuration,endeffectorname)
computes the geometric Jacobian relative to the base for the specified end-effector name
and configuration for the robot model.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

configuration — Robot configuration
vector | structure

Robot configuration, specified as a vector of joint positions or a structure with joint
names and positions for all the bodies in the robot model. You can generate a
configuration using homeConfiguration(robot), randomConfiguration(robot), or
by specifying your own joint positions in a structure. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or
'column' .

endeffectorname — End-effector name
character vector

 geometricJacobian

3-181

End-effector name, specified as a character vector. An end effector can be any body in the
robot model.

Output Arguments
jacobian — Geometric Jacobian
6-by-n matrix

Geometric Jacobian of the end effector with the specified configuration, returned as a
6-by-n matrix, where n is the number of degrees of freedom for the end effector. The
Jacobian maps the joint-space velocity to the end-effector velocity, relative to the base
coordinate frame. The end-effector velocity equals:

V Jq J

q

q

EE

x

y

z

x

y

z

n

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

= =

È

Î

Í
Í
Í

˘

˚

˙
˙

w

w

w

n

n

n

&

&

M

&

1

˙̇

ω is the angular velocity, υ is the linear velocity, and &q is the joint-space velocity.

Examples

Geometric Jacobian for Robot Configuration

Calculate the geometric Jacobian for a specific end effector and configuration of a robot.

Load a Puma robot, which is specified as a RigidBodyTree object.

load exampleRobots.mat puma1

Calculate the geometric Jacobian of body 'L6' on the Puma robot for a random
configuration.

geoJacob = geometricJacobian(puma1,randomConfiguration(puma1),'L6')

3 Methods — Alphabetical List

3-182

geoJacob =

 -0.0000 0.9826 0.9826 0.0286 -0.9155 0.2045
 -0.0000 0.1859 0.1859 -0.1512 0.3929 0.2690
 1.0000 -0.0000 -0.0000 0.9881 0.0866 0.9412
 0.4175 0.0530 0.0799 0.0000 0 0
 0.2317 -0.2802 -0.4223 0.0000 0 0
 0 -0.4532 -0.0464 0.0000 0 0

See Also
Joint | RigidBody | getTransform | homeConfiguration |
randomConfiguration

Introduced in R2016b

 geometricJacobian

3-183

gravityTorque
Class: robotics.RigidBodyTree
Package: robotics

Joint torques that compensate gravity

Syntax
gravTorq = gravityTorque(robot)
gravTorq = gravityTorque(robot,configuration)

Description
gravTorq = gravityTorque(robot) computes the joint torques requires to hold the
robot at its home configuration.

gravTorq = gravityTorque(robot,configuration) specifies a joint configuration
for calculating the gravity torque.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the gravityTorque function,
set the DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the

3 Methods — Alphabetical List

3-184

vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

Output Arguments
gravTorq — Gravity-compensating torque for each joint
vector

Gravity-compensating torque for each joint, returned as a vector.

Examples

Compute Gravity Torque for Robot Configuration

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'. Set the Gravity property.

lbr.DataFormat = 'row';
lbr.Gravity = [0 0 -9.81];

Get a random configuration for lbr.

q = randomConfiguration(lbr);

Compute the gravity-compensating torques for each joint.

gtau = gravityTorque(lbr,q);

• “Control LBR Manipulator Motion Through Joint Torque Commands”

See Also
RigidBodyTree | inverseDynamics | velocityProduct

 gravityTorque

3-185

Topics
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2017a

3 Methods — Alphabetical List

3-186

getBody
Class: robotics.RigidBodyTree
Package: robotics

Get robot body handle by name

Syntax
body = getBody(robot,bodyname)

Description
body = getBody(robot,bodyname) gets a body handle by name from the robot model.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

bodyname — Body name
character vector

Body name, specified as a character vector. A body with this name must be on the robot
model specified by robot.

Output Arguments
body — Rigid body
RigidBody object

Rigid body, returned as a RigidBody object. The returned RigidBody object is still a
part of the RigidBodyTree robot model. Use

 getBody

3-187

robotics.RigidBodyTree.replaceBody with a new body to modify the body in the
robot model.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

3 Methods — Alphabetical List

3-188

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}
 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.
newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.
subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3

 getBody

3-189

 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.addBody |
robotics.RigidBodyTree.replaceBody

Introduced in R2016b

3 Methods — Alphabetical List

3-190

getTransform
Class: robotics.RigidBodyTree
Package: robotics

Get transform between body frames

Syntax
transform = getTransform(robot,configuration,bodyname)
transform = getTransform(robot,configuration,sourcebody,targetbody)

Description
transform = getTransform(robot,configuration,bodyname) computes the
transform that converts points in the bodyname frame to the robot base frame, using the
specified robot configuration.

transform = getTransform(robot,configuration,sourcebody,targetbody)
computes the transform that converts points from the source body frame to the target
body frame, using the specified robot configuration.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

configuration — Robot configuration
structure array

Robot configuration, specified as a structure aray with joint names and positions for all
the bodies in the robot model. You can generate a configuration using
homeConfiguration(robot), randomConfiguration(robot), or by specifying your
own joint names and positions in a structure array.

 getTransform

3-191

bodyname — Body name
character vector

Body name, specified as a character vector. This body must be on the robot model
specified in robot.

targetbody — Target body name
character vector

Target body name, specified as a character vector. This body must be on the robot model
specified in robot. The target frame is the coordinate system you want to transform
points into.

sourcebody — Body name
character vector

Body name, specified as a character vector. This body must be on the robot model
specified in robot. The source frame is the coordinate system you want points
transformed from.

Output Arguments
transform — Homogenous transform
4-by-4 matrix

Homogeneous transform, returned as a 4-by-4 matrix.

Examples

Get Transform Between Frames for Robot Configuration

Get the transform between two frames for a specific robot configuration.

Load a sample robots that include the puma1 robot.

load exampleRobots.mat

3 Methods — Alphabetical List

3-192

Get the transform between the 'L2' and 'L6' bodies of the puma1 robot given a specific
configuration. The transform converts points in 'L6' frame to the 'L2' frame.

transform = getTransform(puma1,randomConfiguration(puma1),'L2','L6')

transform =

 -0.2232 0.4179 0.8807 0.0212
 -0.8191 0.4094 -0.4018 0.1503
 -0.5284 -0.8111 0.2509 -0.4317
 0 0 0 1.0000

See Also
robotics.Joint | robotics.RigidBody |
robotics.RigidBodyTree.geometricJacobian |
robotics.RigidBodyTree.homeConfiguration |
robotics.RigidBodyTree.randomConfiguration

Introduced in R2016b

 getTransform

3-193

homeConfiguration
Class: robotics.RigidBodyTree
Package: robotics

Get home configuration of robot

Syntax
configuration = homeConfiguration(robot)

Description
configuration = homeConfiguration(robot) returns the home configuration of
the robot model. The home configuration is the ordered list of HomePosition properties
of each nonfixed joint.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

Output Arguments
configuration — Robot configuration
vector | structure

Robot configuration, returned as a vector of joint positions or a structure with joint
names and positions for all the bodies in the robot model. You can generate a
configuration using homeConfiguration(robot), randomConfiguration(robot), or
by specifying your own joint positions in a structure. To use the vector form of

3 Methods — Alphabetical List

3-194

configuration, set the DataFormat property for the robot to either 'row' or
'column' .

Examples

Visualize Robot Configurations

Show different configurations of a robot created using a RigidBodyTree model. Use the
homeConfiguration or randomConfiguation functions to generate the structure that
defines all the joint positions.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

Create a structure for the home configuration of a Puma robot. The structure has joint
names and positions for each body on the robot model.

config = homeConfiguration(puma1)

config =

 1x6 struct array with fields:

 JointName
 JointPosition

Show the home configuration using show. You do not need to specify a configuration
input.

show(puma1);

 homeConfiguration

3-195

Modify the configuration and set the second joint position to pi/2. Show the resulting
change in the robot configuration.

config(2).JointPosition = pi/2;
show(puma1,config);

3 Methods — Alphabetical List

3-196

Create random configurations and show them.

show(puma1,randomConfiguration(puma1));

 homeConfiguration

3-197

See Also
robotics.RigidBodyTree.geometricJacobian |
robotics.RigidBodyTree.getTransform |
robotics.RigidBodyTree.randomConfiguration

Introduced in R2016b

3 Methods — Alphabetical List

3-198

inverseDynamics
Class: robotics.RigidBodyTree
Package: robotics

Required joint torques for given motion

Syntax
jointTorq = inverseDynamics(robot)
jointTorq = inverseDynamics(robot,configuration)
jointTorq = inverseDynamics(robot,configuration,jointVel)
jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel)
jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel,
fext)

Description
jointTorq = inverseDynamics(robot) computes joint torques required for the
robot to statically hold its home configuration with no external forces applied.

jointTorq = inverseDynamics(robot,configuration) computes joint torques to
hold the specified robot configuration.

jointTorq = inverseDynamics(robot,configuration,jointVel) computes joint
torques for the specified joint configuration and velocities with zero acceleration and no
external forces.

jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel)
computes joint torques for the specified joint configuration, velocities, and accelerations
with no external forces.

jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel,
fext) computes joint torques for the specified joint configuration, velocities,
accelerations, and external forces. Use the externalForce function to generate fext.

 inverseDynamics

3-199

To specify the home configuration, zero joint velocities, or zero accelerations, use [] for
that input argument.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the inverseDynamics
function, set the DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the
vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

jointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the
velocity degrees of freedom of the robot. To use the vector form of jointVel, set the
DataFormat property for the robot to either 'row' or 'column' .

jointAccel — Joint accelerations
vector

Joint accelerations, returned as a vector. The dimension of the joint accelerations vector
is equal to the velocity degrees of freedom of the robot. Each element corresponds to a
specific joint on the robot. To use the vector form of jointAccel, set the DataFormat
property for the robot to either 'row' or 'column' .

fext — External force matrix
n-by-6 matrix | 6-by-n matrix

External force matrix, specified as either an n-by-6 or 6-by-n matrix, where n is the
velocity degrees of freedom of the robot. The shape depends on the DataFormat property

3 Methods — Alphabetical List

3-200

of robot. The 'row' data format uses an n-by-6 matrix. The 'column' data format uses
a 6-by-n .

The matrix lists only values other than zero at the locations relevant to the body
specified. You can add force matrices together to specify multiple forces on multiple
bodies.

To create the matrix for a specified force or torque, see externalForce.

Output Arguments
jointTorq — Joint torques
vector

Joint torques, returned as a vector. Each element corresponds to a torque applied to a
specific joint.

Examples

Compute Inverse Dynamics from Static Joint Configuration

Use the inverseDynamics function to calculate the required joint torques to statically
hold a specific robot configuration. You can also specify the joint velocities, joint
accelerations, and external forces using other syntaxes.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

 inverseDynamics

3-201

Generate a random configuration for lbr.

q = randomConfiguration(lbr);

Compute the required joint torques for lbr to statically hold that configuration.

tau = inverseDynamics(lbr,q);

Compute Joint Torque to Counter External Forces

Use the externalForce function to generate force matrices to apply to a rigid body tree
model. The force matrix is an m-by-6 vector that has a row for each joint on the robot to
apply a six-element wrench. Use the externalForce function and specify the end
effector to properly assign the wrench to the correct row of the matrix. You can add
multiple force matrices together to apply multiple forces to one robot.

To calculate the joint torques that counter these external forces, use the
inverseDynamics funnction.

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for lbr.

q = homeConfiguration(lbr);

Set external force on link1. The input wrench vector is expressed in the base frame.

fext1 = externalForce(lbr,'link_1',[0 0 0.0 0.1 0 0]);

3 Methods — Alphabetical List

3-202

Set external force on the end effector, tool0. The input wrench vector is expressed in the
tool0 frame.

fext2 = externalForce(lbr,'tool0',[0 0 0.0 0.1 0 0],q);

Compute the joint torques required to balance the external forces. To combine the forces,
add the force matrices together. Joint velocities and accelerations are assumed to be zero
(input as []).

tau = inverseDynamics(lbr,q,[],[],fext1+fext2);

• “Control LBR Manipulator Motion Through Joint Torque Commands”

See Also
RigidBodyTree | externalForce | forwardDynamics

Topics
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2017a

 inverseDynamics

3-203

massMatrix
Class: robotics.RigidBodyTree
Package: robotics

Joint-space mass matrix

Syntax
H = massMatrix(robot)
H = massMatrix(robot,configuration)

Description
H = massMatrix(robot) returns the joint-space mass matrix of the home
configuration of a robot.

H = massMatrix(robot,configuration) returns the mass matrix for a specified
robot configuration.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the massMatrix function, set
the DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the

3 Methods — Alphabetical List

3-204

vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

Output Arguments
H — Mass matrix
positive-definite symmetric matrix

Mass matrix of the robot, returned as a positive-definite symmetric matrix with size n-
by-n, where n is the velocity degrees of freedom of the robot.

Examples

Calculate The Mass Matrix For A Robot Configuration

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Generate a random configuration for lbr.

q = randomConfiguration(lbr);

Get the mass matrix at configuration q.

H = massMatrix(lbr,q);

• “Control LBR Manipulator Motion Through Joint Torque Commands”

See Also
RigidBodyTree | gravityTorque | homeConfiguration | velocityProduct

 massMatrix

3-205

Topics
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2017a

3 Methods — Alphabetical List

3-206

randomConfiguration
Class: robotics.RigidBodyTree
Package: robotics

Generate random configuration of robot

Syntax
configuration = randomConfiguration(robot)

Description
configuration = randomConfiguration(robot) returns a random configuration of
the specified robot. Each joint position in this configuration respects the joint limits set
by the PositionLimits property of the corresponding Joint object in the robot model.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

Output Arguments
configuration — Robot configuration
vector | structure

Robot configuration, returned as a vector of joint positions or a structure with joint
names and positions for all the bodies in the robot model. You can generate a
configuration using homeConfiguration(robot), randomConfiguration(robot), or
by specifying your own joint positions in a structure. To use the vector form of

 randomConfiguration

3-207

configuration, set the DataFormat property for the robot to either 'row' or
'column' .

Examples

Visualize Robot Configurations

Show different configurations of a robot created using a RigidBodyTree model. Use the
homeConfiguration or randomConfiguation functions to generate the structure that
defines all the joint positions.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

Create a structure for the home configuration of a Puma robot. The structure has joint
names and positions for each body on the robot model.

config = homeConfiguration(puma1)

config =

 1x6 struct array with fields:

 JointName
 JointPosition

Show the home configuration using show. You do not need to specify a configuration
input.

show(puma1);

3 Methods — Alphabetical List

3-208

Modify the configuration and set the second joint position to pi/2. Show the resulting
change in the robot configuration.

config(2).JointPosition = pi/2;
show(puma1,config);

 randomConfiguration

3-209

Create random configurations and show them.

show(puma1,randomConfiguration(puma1));

3 Methods — Alphabetical List

3-210

See Also
robotics.RigidBodyTree.geometricJacobian |
robotics.RigidBodyTree.getTransform |
robotics.RigidBodyTree.homeConfiguration

Introduced in R2016b

 randomConfiguration

3-211

removeBody
Class: robotics.RigidBodyTree
Package: robotics

Remove body from robot

Syntax
removeBody(robot,bodyname)
newSubtree = removeBody(robot,bodyname)

Description
removeBody(robot,bodyname) removes the body and all subsequently attached bodies
from the robot model.

newSubtree = removeBody(robot,bodyname) returns the subtree created by
removing the body and all subsequently attached bodies from the robot model.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

bodyname — Body name
character vector

Body name, specified as a character vector. This body must be on the robot model
specified in robot.

3 Methods — Alphabetical List

3-212

Output Arguments
newSubtree — Robot subtree
RigidBodyTree object

Robot subtree, returned as a RigidBodyTree object. This new subtree uses the parent
name of the body specified by bodyname as the base name. All bodies that are attached
in the previous robot model (including the body with bodyname specified) are added to
the subtree.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

 removeBody

3-213

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}
 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.

newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.

3 Methods — Alphabetical List

3-214

subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.addBody |
robotics.RigidBodyTree.replaceBody

 removeBody

3-215

Introduced in R2016b

3 Methods — Alphabetical List

3-216

replaceBody
Class: robotics.RigidBodyTree
Package: robotics

Replace body on robot

Syntax
replaceBody(robot,bodyname,newbody)

Description
replaceBody(robot,bodyname,newbody) replaces the body in the robot model with
the new body. All properties of the body are updated accordingly, except the Parent and
Children properties. The rest of the robot model is unaffected.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. The rigid body is added to this object
and attached at the rigid body specified by bodyname.

bodyname — Body name
character vector

Body name, specified as a character vector. This body must be on the robot model
specified in robot.

newbody — Rigid body
RigidBody object

Rigid body, specified as a RigidBody object.

 replaceBody

3-217

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.addBody |
robotics.RigidBodyTree.removeBody |
robotics.RigidBodyTree.replaceJoint

Introduced in R2016b

3 Methods — Alphabetical List

3-218

replaceJoint
Class: robotics.RigidBodyTree
Package: robotics

Replace joint on body

Syntax
replaceJoint(robot,bodyname,joint)

Description
replaceJoint(robot,bodyname,joint) replaces the joint on the specified body in
the robot model if the body is a part of the robot model. This method is the only way to
change joints in a robot model. You cannot directly assign the Joint property of a rigid
body.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

bodyname — Body name
character vector

Body name, specified as a character vector. This body must be on the robot model
specified in robot.

joint — Replacement joint
Joint object

Replacement joint, specified as a Joint object.

 replaceJoint

3-219

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1

3 Methods — Alphabetical List

3-220

 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}
 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.
newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.
subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'

 replaceJoint

3-221

 Gravity: [0 0 0]
 DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.addBody |
robotics.RigidBodyTree.replaceBody

Introduced in R2016b

3 Methods — Alphabetical List

3-222

show
Class: robotics.RigidBodyTree
Package: robotics

Show robot model in a figure

Syntax
show(robot)
show(robot,configuration)
show(___ ,Name,Value)
ax = show(___)

Description
show(robot) plots the body frames of the robot model in a figure with the predefined
home configuration. Both Frames and Visuals are displayed automatically.

show(robot,configuration) uses the joint positions specified in configuration to
show the robot body frames.

show(___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN, using any combination of previous syntaxes.

ax = show(___) returns the axes handle the robot is plotted on.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

 show

3-223

configuration — Robot configuration
vector | structure

Robot configuration, specified as a vector of joint positions or a structure with joint
names and positions for all the bodies in the robot model. You can generate a
configuration using homeConfiguration(robot), randomConfiguration(robot), or
by specifying your own joint positions in a structure. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or
'column' .

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Parent — Parent of axes
Axes object

Parent of axes, specified as the comma-separated pair consisting of Parent and an Axes
object in which to draw the robot. By default, the robot is plotted in the active axes.

PreservePlot — Preserve robot plot
true (default) | false

Option to reserve robot plot, specified as the comma-separated pair consisting of
'PreservePlot' and true or false. When this property is set to true, previous plots
displayed by calling show are not overwritten. This setting functions similar to calling
hold on for a standard MATLAB figure, but is limited to the robot body frames. When
this property is set to false, previous plots of the robot are overwritten.

Frames — Display body frames
'on' (default) | 'off'

Display body frames, specified as 'on' or 'off'. These frames are the coordinate frames
of individual bodies on the rigid body tree.

Visuals — Display visual geometries
'on' (default) | 'off'

3 Methods — Alphabetical List

3-224

Display visual geometries, specified as 'on' or 'off'. Individual visual geometries can
also be turned off by right-clicking them in the figure.

You can either specify individual visual geometries using
robotics.RigidBody.addVisual or by using the importrobot to import a robot
model with .stl files specified.

Output Arguments
ax — Axes graphic handle
Axes object

Axes graphic handle, returned as an Axes object. This object contains the properties of
the figure that the robot is plotted onto.

Examples
Display a Robot Model with Visual Geometries

You can import robots that have .stl files associated with the Unified Robot Description
format (URDF) file to describe the visual geometries of the robot. Each rigid body has an
individual visual geometry specified. The importrobot function parses to URDF file to
get the robot model and visual geometries. Use the show function to visualize the robot
model in a figure. You can then interact with the model by clicking components to inspect
them and right-clicking to toggle visibility.

Import a robot model as a URDF file. The .stl file locations must be properly specified in
this URDF. To add other .stl files to individual rigid bodies, see
robotics.RigidBody.addVisual.

robot = importrobot('iiwa14.urdf');

Visualize the robot with the associated visual model. Click bodies or frames to inspect
them. Right-click bodies to toggle visibility for each visual geometry.

show(robot)

ans =

 show

3-225

 Axes (Primary) with properties:

 XLim: [-1.5000 1.5000]
 YLim: [-1.5000 1.5000]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Use GET to show all properties

3 Methods — Alphabetical List

3-226

Visualize Robot Configurations

Show different configurations of a robot created using a RigidBodyTree model. Use the
homeConfiguration or randomConfiguation functions to generate the structure that
defines all the joint positions.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

Create a structure for the home configuration of a Puma robot. The structure has joint
names and positions for each body on the robot model.

 show

3-227

config = homeConfiguration(puma1)

config =

 1x6 struct array with fields:

 JointName
 JointPosition

Show the home configuration using show. You do not need to specify a configuration
input.
show(puma1);

3 Methods — Alphabetical List

3-228

Modify the configuration and set the second joint position to pi/2. Show the resulting
change in the robot configuration.

config(2).JointPosition = pi/2;
show(puma1,config);

Create random configurations and show them.

show(puma1,randomConfiguration(puma1));

 show

3-229

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.

3 Methods — Alphabetical List

3-230

dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH

parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

 show

3-231

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the
robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

3 Methods — Alphabetical List

3-232

Tips

Visual Components
Your robot model has visual components associated with it. Each RigidBody object
contains a coordinate frame that is displayed as the body frame. Each body also can have
visual meshes associated with them. By default, both of these components are displayed
automatically. You can inspect or modify the visual components of the rigid body tree
display. Click body frames or visual meshes to highlight them in yellow and see the
associated body name, index, and joint type. Right-click to toggle visibility of individual
components.

 show

3-233

• Body Frames: Individual body frames are displayed as a 3-axis coordinate frame.
Fixed frames are pink frames. Movable joint types are displayed as RGB axes. You
can click a body frame to see the axis of motion. Prismatic joints show a yellow arrow
in the direction of the axis of motion and, revolute joints show a circular arrow around
the rotation axis.

• Visual Meshes: Individual visual geometries are specified using
robotics.RigidBody.addVisual or by using the importrobot to import a robot
model with .stl files specified. By right-clicking individual bodies in a figure, you
can turn off their meshes or specify the Visuals name-value pair to hide all visual
geometries.

3 Methods — Alphabetical List

3-234

See Also
importrobot | robotics.RigidBodyTree.randomConfiguration |
robotics.RigidBodyTree.showdetails

Introduced in R2016b

 show

3-235

showdetails
Class: robotics.RigidBodyTree
Package: robotics

Show details of robot model

Syntax
showdetails(robot)

Description
showdetails(robot) displays in the MATLAB command window the details of each
body in the robot model. These details include the body name, associated joint name,
joint type, parent name, and children names.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each RigidBody object
contains a Joint object and must be added to the RigidBodyTree using addBody.

Create a rigid body tree.

3 Methods — Alphabetical List

3-236

rbtree = robotics.RigidBodyTree;

Create a rigid body with a unique name.

body1 = robotics.RigidBody('b1');

Create a revolute joint. By default, the RigidBody object comes with a fixed joint.
Replace the joint by assigning a new Joint object to the body1.Joint property.

jnt1 = robotics.Joint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid
body to. Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

Robot: (1 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 b1 jnt1 revolute base(0)

Modify a Robot Rigid Body Tree Model

Make changes to an existing RigidBodyTree object. You can get replace joints, bodies
and subtrees in the rigid body tree.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

 showdetails

3-237

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body.
You can copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}
body3Copy = copy(body3);

childBody =

 RigidBody with properties:

 Name: 'L4'
 Joint: [1x1 robotics.Joint]
 Mass: 1
 CenterOfMass: [0 0 0]
 Inertia: [1 1 1 0 0 0]
 Parent: [1x1 robotics.RigidBody]
 Children: {[1x1 robotics.RigidBody]}
 Visuals: {}

Replace the joint on the L3 body. You must create a new Joint object and use
replaceJoint to ensure the downstream body geometry is unaffected. Call
setFixedTransform if necessary to define a transform between the bodies instead of
with the default identity matrices.

newJoint = robotics.Joint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

3 Methods — Alphabetical List

3-238

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 prismatic fixed L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Remove an entire body and get the resulting subtree using removeBody. The removed
body is included in the subtree.

subtree = removeBody(puma1,'L4')

subtree =

 RigidBodyTree with properties:

 NumBodies: 3
 Bodies: {1x3 cell}
 Base: [1x1 robotics.RigidBody]
 BodyNames: {'L4' 'L5' 'L6'}
 BaseName: 'L3'
 Gravity: [0 0 0]
 DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed
by the returned subtree. The robot model remains the same. See a detailed comparison
through showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

Robot: (6 bodies)

 showdetails

3-239

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 L1 jnt1 revolute base(0) L2(2)
 2 L2 jnt2 revolute L1(1) L3(3)
 3 L3 jnt3 revolute L2(2) L4(4)
 4 L4 jnt4 revolute L3(3) L5(5)
 5 L5 jnt5 revolute L4(4) L6(6)
 6 L6 jnt6 revolute L5(5)

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot.
Each rigid body is added one at a time, with the child-to-parent transform specified by
the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body
is attached to its parent. For convenience, setup the parameters for the Puma560 robot in
a matrix. The Puma robot is a serial chain manipulator. The DH parameters are relative
to the previous line in the matrix, corresponding to the previous joint attachment.

dhparams = [0 pi/2 0 0;
 0.4318 0 0 0
 0.0203 -pi/2 0.15005 0;
 0 pi/2 0.4318 0;
 0 -pi/2 0 0;
 0 0 0 0];

Create a rigid body tree object to build the robot.

robot = robotics.RigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a RigidBody object and give it a unique name.
2 Create a Joint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH

parameters. The last element of the DH parameters, theta, is ignored because the
angle is dependent on the joint position.

4 Call addBody to attach the first body joint to the base frame of the robot.

3 Methods — Alphabetical List

3-240

body1 = robotics.RigidBody('body1');
jnt1 = robotics.Joint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when
calling addBody to attach it. Each fixed transform is relative to the previous joint
coordinate frame.

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
body3 = robotics.RigidBody('body3');
jnt3 = robotics.Joint('jnt3','revolute');
body4 = robotics.RigidBody('body4');
jnt4 = robotics.Joint('jnt4','revolute');
body5 = robotics.RigidBody('body5');
jnt5 = robotics.Joint('jnt5','revolute');
body6 = robotics.RigidBody('body6');
jnt6 = robotics.Joint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function.
showdetails lists all the bodies in the MATLAB® command window. show displays the

 showdetails

3-241

robot with a given configuration (home by default). Calls to axis modify the axis limits
and hide the axis labels.

showdetails(robot)

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

Robot: (6 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2)
 2 body2 jnt2 revolute body1(1) body3(3)
 3 body3 jnt3 revolute body2(2) body4(4)
 4 body4 jnt4 revolute body3(3) body5(5)
 5 body5 jnt5 revolute body4(4) body6(6)
 6 body6 jnt6 revolute body5(5)

3 Methods — Alphabetical List

3-242

See Also
robotics.RigidBodyTree.replaceBody |
robotics.RigidBodyTree.replaceJoint | robotics.RigidBodyTree.show

Introduced in R2016b

 showdetails

3-243

subtree
Class: robotics.RigidBodyTree
Package: robotics

Create subtree from robot model

Syntax
newSubtree = subtree(robot,bodyname)

Description
newSubtree = subtree(robot,bodyname) creates a new robot model using the
parent name of the body specified by bodyname as the base name. All subsequently
attached bodies (including the body with bodyname specified) are added to the subtree.
The original robot model is unaffected.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object.

bodyname — Body name
character vector

Body name, specified as a character vector. This body must be on the robot model
specified in robot.

3 Methods — Alphabetical List

3-244

Output Arguments
newSubtree — Robot subtree
RigidBodyTree object

Robot subtree, returned as a RigidBodyTree object. This new subtree uses the parent
name of the body specified by bodyname as the base name. All bodies that are attached
in the previous robot model (including the body with bodyname specified) are added to
the subtree.

See Also
robotics.Joint | robotics.RigidBody | robotics.RigidBodyTree.addBody |
robotics.RigidBodyTree.replaceBody

Introduced in R2016b

 subtree

3-245

velocityProduct
Class: robotics.RigidBodyTree
Package: robotics

Joint torques that cancel velocity-induced forces

Syntax
jointTorq = velocityProduct(robot,configuration,jointVel)

Description
jointTorq = velocityProduct(robot,configuration,jointVel) computes the
joint torques required to cancel the forces induced by the specified joint velocities under a
certain joint configuration. Gravity torque is not included in this calculation.

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a RigidBodyTree object. To use the velocityProduct
function, set the DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the
robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the
vector form of configuration, set the DataFormat property for the robot to either
'row' or 'column' .

3 Methods — Alphabetical List

3-246

jointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the
velocity degrees of freedom of the robot. To use the vector form of jointVel, set the
DataFormat property for the robot to either 'row' or 'column' .

Output Arguments
jointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a
specific joint.

Examples

Compute Velocity-Induced Joint Torques

Load a predeinfed KUKA LBR robot model, which is specified as a RigidBodyTree
object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be
either 'row' or 'column'.

lbr.DataFormat = 'row';

Set the joint velocity vector.

qdot = [0 0 0.2 0.3 0 0.1 0];

Compute the joint torques required to cancel the velocity-induced joint torques at the
robot home configuration ([] input). The velocity-induced joint torques equal the
negative of the velocityProduct output.

 velocityProduct

3-247

tau = -velocityProduct(lbr,[],qdot);

• “Control LBR Manipulator Motion Through Joint Torque Commands”

See Also
RigidBodyTree | gravityTorque | inverseDynamics | massMatrix

Topics
“Control LBR Manipulator Motion Through Joint Torque Commands”

Introduced in R2017a

3 Methods — Alphabetical List

3-248

robotics.VectorFieldHistogram.reset
System object: robotics.VectorFieldHistogram
Package: robotics

Reset internal states to default

Syntax
reset(vfh)

Description
reset(vfh) resets the internal states of the VectorFieldHistogram object to their
initial values. All properties specific to the object are kept the same.

Input Arguments
vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

Examples

Reset VectorFieldHistogram Object

Create a VectorFieldHistogram object.

vfh = robotics.VectorFieldHistogram;

Reset the object. All property values remain the same. Internal states are reset including
previous laser scans specified.

 robotics.VectorFieldHistogram.reset

3-249

reset(vfh)

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.step

Introduced in R2015b

3 Methods — Alphabetical List

3-250

robotics.VectorFieldHistogram.step
System object: robotics.VectorFieldHistogram
Package: robotics

Find obstacle-free steering direction

Syntax
steeringDir = step(vfh,ranges,angles,targetDir)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

steeringDir = step(vfh,ranges,angles,targetDir) finds an obstacle-free
steering direction using the VFH+ algorithm for input vectors, ranges and angles. The
algorithm parameters are defined in the vfh object. A target direction is given based on
the target location.

Input Arguments
vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

ranges — Range values from scan data
vector

 robotics.VectorFieldHistogram.step

3-251

Range values from scan data, specified as a vector in meters. These range values are
distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the
specific angles of the given ranges. The vector must be the same length as the
corresponding ranges vector.

targetDir — Target direction for robot
scalar

Target direction for the robot, specified as a scalar in radians. The forward direction of
the robot is considered zero radians, with positive angles measured counterclockwise.

Output Arguments
steeringDir — Steering direction for robot
scalar

Steering direction for the robot, specified as a scalar in radians. This obstacle-free
direction is calculated based on the VFH+ algorithm. The forward direction of the robot is
considered zero radians, with positive angles measured counterclockwise.

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a VectorFieldHistogram object.

 vfh = robotics.VectorFieldHistogram;

Input laser scan data and target direction.

3 Methods — Alphabetical List

3-252

ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Compute an obstacle-free steering direction.

steeringDir = vfh(ranges,angles,targetDir)

steeringDir =

 -0.8014

Visualize the VectorFieldHistogram computation.

h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)

• “Obstacle Avoidance Using TurtleBot”

 robotics.VectorFieldHistogram.step

3-253

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.reset |
robotics.VectorFieldHistogram.show

Topics
“Obstacle Avoidance Using TurtleBot”
“Vector Field Histogram”

Introduced in R2015b

3 Methods — Alphabetical List

3-254

Blocks — Alphabetical List

4

Blank Message
Create blank message using specified message type
Library: Robotics System Toolbox / ROS

Description
The Blank Message block creates a Simulink nonvirtual bus corresponding to the
selected ROS message type. On each sample hit, the block outputs a blank or “zero”
signal for the designated message type. All elements of the bus are initialized to 0. The
lengths of the variable-length arrays are also initialized to 0.

Limitations
Prior to R2016b, models using ROS message types that have certain reserved property
names could not generate code. In 2016b, this limitation has been removed. These
properties are renamed with an appended underscore (e.g. Vector_). If you use models
prior to R2016b, update the ROS message types using these names and redefine custom
maximum sizes for variable length arrays.

The affected message types are:

• 'geometry_msgs/Vector3Stamped'
• 'jsk_pcl_ros/TransformScreenpointResponse'
• 'pddl_msgs/PDDLAction'
• 'rocon_interaction_msgs/Interaction'
• 'capabilities/GetRemappingsResponse'
• 'dynamic_reconfigure/Group'

4 Blocks — Alphabetical List

4-2

Input/Output Ports

Output

Msg — Blank ROS message
nonvirtual bus

Blank ROS message, returned as a nonvirtual bus. To specify the type of ROS message,
use the Message type parameter. All elements of the bus are initialized to 0. The
lengths of the variable-length arrays are also initialized to 0.
Data Types: bus

Parameters
Message type — ROS message type
'geometry_msgs/Point' (default) | string

ROS message type, specified as a string. Use Select to select a message from a list of
supported ROS messages. Service message types are not supported and are not included
in the list.

Sample time — Interval between outputs
inf (default) | scalar

Interval between outputs, specified as a scalar. The default value indicates that the block
output never changes. Using this value speeds simulation and code generation by
eliminating the need to recompute the block output. Otherwise, the block outputs a new
blank message at each interval of Sample time.

For more information, see “Specify Sample Time” (Simulink).

Model Examples

See Also
Publish | Subscribe

 Blank Message

4-3

Topics
“Virtual and Nonvirtual Buses” (Simulink)

Introduced in R2015a

4 Blocks — Alphabetical List

4-4

Coordinate Transformation Conversion
Convert to a specified coordinate transformation representation
Library: Robotics System Toolbox / Utilities

Description
The Coordinate Transformation Conversion block converts a coordinate transformation
from the input representation to a specified output representation. The input and output
representations use the following forms:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information
(TrVec or Eul, for example), you can specify two inputs or outputs to handle all
transformation information. When you select the Homogeneous Transformation as an
input or output, an optional Show TrVec input/output port parameter can be
selected on the block mask to toggle the multiple ports.

For more information about the different coordinate transformation representations, see
“Coordinate Transformations in Robotics”.

 Coordinate Transformation Conversion

4-5

Ports

Input

Input transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Input transformation, specified as a coordinate transformation. The following
representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information
(TrVec or Eul, for example), you can specify two inputs or outputs to handle all
transformation information. When you select the Homogeneous Transformation as an
input or output, an optional Show TrVec input/output port parameter can be
selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
3-element column vector

Translation vector, specified as a 3-element column vector, [x y z], which corresponds
to a translation in the x, y, and z axes respectively. This port can be used to input or
output the translation information separately from the rotation vector.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation
port to get the option to show the additional TrVec port. Enable the port by clicking
Show TrVec input/output port.

4 Blocks — Alphabetical List

4-6

Output Arguments

Output transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Output transformation, specified as a coordinate transformation with the specified
representation. The following representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

To accommodate representations that only contain position or orientation information
(TrVec or Eul, for example), you can specify two inputs or outputs to handle all
transformation information. When you select the Homogeneous Transformation as an
input or output, an optional Show TrVec input/output port parameter can be
selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
three-element column vector

Translation vector, specified as a three-element column vector, [x y z], which
corresponds to a translation in the x, y, and z axes respectively. This port can be used to
input or output the translation information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation
port to get the option to show the additional TrVec port. Enable the port by clicking
Show TrVec input/output port.

 Coordinate Transformation Conversion

4-7

Parameters
Representation — Input or output representation
Axis-Angle | Euler Angles | Homogeneous Transformation | Rotation Matrix
| Translation Vector | Quaternion

Select the representation for both the input and output port for the block. If you are
using a transformation with only orientation information, you can also select the Show
TrVec input/output port when converting to or from a homogeneous
transformation.

Show TrVec input/output port — Toggle TrVec port
off (default) | on

Toggle the TrVec input or output port when you want to specify or receive a separate
translation vector for position information along with an orientation represenation.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation
port to get the option to show the additional TrVec port.

Model Examples

See Also
axang2quat | eul2tform | trvec2tform

Topics
“Coordinate Transformations in Robotics”

Introduced in R2017b

4 Blocks — Alphabetical List

4-8

Get Parameter
Get values from ROS parameter server
Library: Robotics System Toolbox / ROS

Description
The Get Parameter block outputs the value of the specified ROS parameter. The block
uses the ROS node of the Simulink model to connect to the ROS network. This node is
created when you run the model and is deleted when the model terminates. If the model
does not have a node, the block creates one.

On each sample hit, the block checks the ROS parameter server for the specified ROS
parameter and outputs its value.

Input/Output Ports

Output
Value — Parameter value
scalar | logical | uint8 array

Parameter value from the ROS network. The value depends on the Data type
parameter.

ErrorCode — Status of ROS parameter
0 | 1 | 2 | 3

Status of ROS parameter, specified as one of the following:

• 0 — ROS parameter retrieved successfully. The retrieved value is output in the
Value port.

 Get Parameter

4-9

• 1 — No ROS parameter with specified name found. If there is no known value, Value
is set to the last received value or to Initial value.

• 2 — ROS parameter retrieved, but its type is different than the specified Data type.
If there is no known value, Value is set to the last received value or to Initial value.

• 3 — For string parameters, the incoming string has been truncated based on the
specified length.

Length — Length of string parameter
integer

Length of the string parameter, returned as an integer. This length is the number of
elements of the uint8 array or the number of characters in the string that you cast to
uint8.

Note When getting string parameters from the ROS network, an ASCII value of 13
returns an error due to its incompatible character type.

Dependencies

To enable this port, set the Data type to uint8[] (string).

Parameters
Source — Source for specifying the parameter name
Select from ROS network | Specify your own

Source for specifying the parameter name as one of the following:

• Select from ROS network — Use Select to select a parameter name. The Data
type parameter is set automatically. You must be connected to a ROS network.

• Specify your own — Enter a parameter name in Name and specify its data type in
Data type. You must match a parameter name exactly.

Name — Parameter name
string

Parameter name to get from the ROS network, specified as a string. When Source is set
to Select from ROS network, use Select to select an existing parameter. You must

4 Blocks — Alphabetical List

4-10

be connected to a ROS network to get a list of parameters. Otherwise, specify the
parameter and data type.

Parameter name strings must follow the rules of ROS graph names. Valid names have
these characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or forward

slashes (/).

Data type — Data type of your parameter
double | int32 | boolean | uint8[] (string)

Data type of your parameter, specified as a string. The uint8[] (string) enables the
Maximum length parameter.

Note The uint8[] (string) data type is an array of ASCII values corresponding to
the characters in a string. When getting string parameters, you can create a MATLAB
Function block to compare the string to a desired parameter value. For more information,
see “ROS String Parameters”.

Data Types: double | int32 | Boolean | uint8

Maximum length — Maximum length of the uint8 array
scalar

Maximum length of the uint8 array, specified as a scalar. If the parameter string has a
length greater than Maximum length, the ErrorCode output is set to 3.
Dependencies

To enable this port, set the Data type to uint8[] (string).

Initial value — Default parameter value output
double | int32 | boolean | uint8

Default parameter value output from when an error occurs and no valid value has been
received from the parameter server. The data type must match the specified Data type.

Sample time — Interval between outputs
inf (default) | scalar

 Get Parameter

4-11

Interval between outputs, specified as a scalar. This default value indicates that the
block output never changes. Using this value speeds simulation and code generation by
eliminating the need to recompute the block output. Otherwise, the block outputs a new
blank message at each interval of Sample time.

For more information, see “Specify Sample Time” (Simulink).

Show ErrorCode output port — Display error code output
on | off

To enable error code output, select this parameter. When you clear this parameter, the
ErrorCode output port is removed from the block. The status options are:

• 0 — ROS parameter retrieved successfully. The retrieved value is output in the
Value port.

• 1 — No ROS parameter with specified name found. If there is no known value, Value
is set to the last received value or to Initial value.

• 2 — ROS parameter retrieved, but its type is different than the specified Data type.
If there is no known value, Value is set to the last received value or to Initial value.

• 3 — For string parameters, the incoming string has been truncated based on the
specified length.

Model Examples

See Also
Set Parameter

External Websites
ROS Parameter Server
ROS Graph Names

Introduced in R2015b

4 Blocks — Alphabetical List

4-12

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Names

Publish
Send messages to ROS network
Library: Robotics System Toolbox / ROS

Description
The Publish block takes in as its input a Simulink nonvirtual bus that corresponds to the
specified ROS message type and publishes it to the ROS network. It uses the node of the
Simulink model to create a ROS publisher for a specific topic. This node is created when
the model runs and is deleted when the model terminates. If the model does not have a
node, the block creates one.

On each sample hit, the block converts the Msg input from a Simulink bus signal to a
ROS message and publishes it. The block does not distinguish whether the input is a new
message but merely publishes it on every sample hit. For simulation, this input is a
MATLAB ROS message. In code generation, it is a C++ ROS message.

Input/Output Ports

Input

Msg — ROS message
nonvirtual bus

ROS message, specified as a nonvirtual bus. To specify the type of ROS message, use the
Message type parameter.
Data Types: bus

 Publish

4-13

Parameters
Topic source — Source for specifying topic name
Select from ROS network | Specify your own

Source for specifying the topic name, specified as one of the following:

• Select from ROS network — Use Select to select a topic name. The Topic and
Message type parameters are set automatically. You must be connected to a ROS
network.

• Specify your own — Enter a topic name in Topic and specify its message type in
Message type. You must match a topic name exactly.

Topic — Topic name to publish to
string

Topic name to publish to, specified as a string. When Topic source is set to Select
from ROS network, use Select to select a topic from the ROS network. You must be
connected to a ROS network to get a list of topics. Otherwise, set Topic source to
Specify your own and specify the topic you want.

Message type — ROS message type
string

ROS message type, specified as a string. Use Select to select from a full list of supported
ROS messages. Service message types are not supported and are not included in the list.

Length of publish queue — Message queue length
1 (default) | integer

Message queue length in code generation, specified as an integer. In simulation, the
message queue is always 1.

4 Blocks — Alphabetical List

4-14

Model Examples

Tips
You can also set the addresses for the ROS master and node host by clicking the
Configure network addresses link in the block.

See Also
Blank Message | Subscribe

Topics
“Virtual and Nonvirtual Buses” (Simulink)
“Simulink and ROS Interaction”

Introduced in R2015a

 Publish

4-15

Pure Pursuit
Linear and angular velocity control commands
Library: Robotics System Toolbox / Mobile Robot Algorithms

Description
The Pure Pursuit block computes linear and angular velocity commands for following a
path using a set of waypoints and the current pose of a differential drive robot. The block
takes updated poses to update velocity commands for the robot to follow a path along a
desired set of waypoints. Use the Max angular velocity and Desired linear velocity
parameters to update the velocities based on the performance of the robot.

The Lookahead distance parameter computes a look-ahead point on the path, which is
an instantaneous local goal for the robot. The angular velocity command is computed
based on this point. Changing Lookahead distance has a significant impact on the
performance of the algorithm. A higher look-ahead distance results in a smoother
trajectory for the robot, but can cause the robot to cut corners along the path. Too low of a
look-ahead distance can result in oscillations in tracking the path, causing unstable
behavior. For more information on the pure pursuit algorithm, see “Pure Pursuit
Controller”.

Input/Output Ports

Input

Pose — Current robot pose
[x y theta] vector

4 Blocks — Alphabetical List

4-16

Current robot pose, specified as an [x y theta] vector, which corresponds to the x-y
position and orientation angle, theta. Positive angles are measured counterclockwise
from the positive x-axis.

Waypoints — Waypoints
[] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of
waypoints. You can generate the waypoints from the robotics.PRM class or specify
them as an array in Simulink.

Output

LinVel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

AngVel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

TargetDir — Target direction for robot
scalar in radians

Target direction for the robot, specified as a scalar in radians. The forward direction of
the robot is considered zero radians, with positive angles measured counterclockwise.
This output can be used as the input to the TargetDir port for the Vector Field
Histogram block.
Dependencies

To enable this port, select the Show TargetDir output port parameter.

 Pure Pursuit

4-17

Parameters
Desired linear velocity (m/s) — Linear velocity
0.1 (default) | scalar

Desired linear velocity, specified as a scalar in meters per second. The controller assumes
that the robot drives at a constant linear velocity and that the computed angular velocity
is independent of the linear velocity.

Maximum angular velocity (rad/s) — Angular velocity
1.0 (default) | scalar

Maximum angular velocity, specified as a scalar in radians per second. The controller
saturates the absolute angular velocity output at the given value.

Lookahead distance (m) — Look-ahead distance
1.0 (default) | scalar

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes
the response of the controller. A robot with a higher look-ahead distance produces smooth
paths but takes larger turns at corners. A robot with a smaller look-ahead distance
follows the path closely and takes sharp turns, but oscillate along the path. For more
information on the effects of look-ahead distance, see “Pure Pursuit Controller”.

Show TargetDir output port — Target direction indicator
off (default) | on

Select this parameter to enable the TargetDir out port. This port gives the target
direction as an angle in radians from the forward position, with positive angles measured
counterclockwise.

Model Examples

See Also
Blocks
Publish | Subscribe | Vector Field Histogram

4 Blocks — Alphabetical List

4-18

Classes
robotics.PRM | robotics.PurePursuit

Topics
“Path Following for a Differential Drive Robot”
“Pure Pursuit Controller”

Introduced in R2016b

 Pure Pursuit

4-19

Read Image
Extract image from ROS Image message
Library: Robotics System Toolbox / ROS

Description
The Read Image block extracts an image from a ROS Image or CompressedImage
message. You can select the ROS message parameters of a topic active on a live ROS
network or specify the message parameters separately. The ROS messages are specified
as a nonvirtual bus. Use the Subscribe block output to receive a message from a ROS
network and input the message to the Read Image block.

Note When reading ROS image messages from the network, the Data property of the
message can exceed the maximum array length set in Simulink. To increase the
maximum array length, click Tools > Manage Array Lengths > Robot Operating
System, select the Data array, and increase the size based on the number of points in
the image.

Ports

Input

Msg — ROS Image or CompressedImage message
nonvirtual bus

4 Blocks — Alphabetical List

4-20

ROS Image or CompressedImage message, specified as a nonvirtual bus. You can use
the Subscribe block to get a message from an active ROS network.
Data Types: bus

Output

Image — Extracted image signal
M-by-N-by-3 matrix | M-by-N matrix

Extracted image signal from ROS message, returned as an M-by-N-by-3 matrix for color
images, and an M-by-N matrix for grayscale images. The matrix contains the pixel data
from the Data property of the ROS message.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

AlphaChannel — Alpha channel for image
M-by-N matrix

Alpha channel for image, returned as an M-by-N matrix. This matrix is the same height
and width as the image output and has values [0 1] to indicate the opacity of each
corresponding pixel, with a value of 0 being completely transparent.

Note For CompressedImage messages, the Alpha channel returns all zeros if the Show
Alpha output port is enabled.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16

ErrorCode — Error code for image conversion
scalar

Error code for image conversion, returned as a scalar. The error code values are:

• 0 – Successfully converted the image message.
• 1 – Incorrect image encoding. Check that the incoming message encoding matches the

ImageEncoding parameter.
• 2 – The dimensions of the image message exceed the limits specified in the Maximum

Image Size parameter.

 Read Image

4-21

• 3 – The Data field of the image message was truncated. See “Managing Array Sizes in
Simulink ROS” to increase the maximum length of the array.

• 04 – Image decompression failed.

Data Types: uint8

Parameters
Maximum Image Size — Maximum image size
[2000 2000] (default) | two-element vector

Maximum image size, specified as a two-element [height width] vector.

Click Configure using ROS ... to set this parameter automatically using an active topic
on a ROS network. You must be connected to the ROS network.

Image Encoding — Image encoding
rgb8 (default) | rgba8 | ...

Image encoding for the input ImageMsg. Select the supported encoding type which
matches the Encoding property of the message. For more information about encoding
types, see readImage.

Show Alpha output port — Toggle AlphaChannel port
off (default) | on

Toggle Alpha channel output port if your encoding supports an Alpha channel.
Dependencies

Only certain encoding types support alpha channels. The ImageEncoding parameter
determines if this parameter appears in the block mask.

Show error code output port — Toggle ErrorCode port
on (default) | off

Toggle the ErrorCode port to monitor errors.

Output variable-size signals — Toggle variable-size signal output
off (default) | on

4 Blocks — Alphabetical List

4-22

Toggle vairable-size signal output. Variable-sized signals should only be used if the
image size is expected to change over time. For more information about variable sized
signals, see “Variable-Size Signal Basics” (Simulink).

Model Examples

See Also
Blank Message | CompressedImage | Image | Subscribe | readImage

Topics
“Managing Array Sizes in Simulink ROS”
“Variable-Size Signal Basics” (Simulink)

Introduced in R2017b

 Read Image

4-23

Read Point Cloud
Extract point cloud from ROS PointCloud2 message
Library: Robotics System Toolbox / ROS

Description
The Read Point Cloud block extracts a point cloud from a ROS PointCloud2 message.
You can select the ROS message parameters of a topic active on a live ROS network or
specify the message parameters separately. The ROS messages are specified as a
nonvirtual bus. Use the Subscribe block to receive a message from a ROS network and
input the message to the Read Point Cloud block.

Note When reading ROS point cloud messages from the network, the Data property of
the message can exceed the maximum array length set in Simulink. To increase the
maximum array length, click Tools > Manage Array Lengths > Robot Operating
System , select the Data array, and increase the size based on the number of points in
the point cloud.

Ports

Input

Msg — ROS PointCloud2 message
nonvirtual bus

4 Blocks — Alphabetical List

4-24

ROS PointCloud2 message, specified as a nonvirtual bus. You can use the Subscribe
block to get a message from the ROS network.
Data Types: bus

Output

XYZ — XYZ coordinates
matrix | multidimensional array

x, y, and z coordinates of the point cloud data, output as either an N-by-3 matrix or h-by-
w-by-3 multidimensional array. N is the number of points. h and w are the height and
width of the image in pixels. To get the x, y, and z coordinates as a multidimensional
array, select the Preserve point cloud structure check box in the block mask
paramerters.
Data Types: single

RGB — RGB values for each point
matrix | multidimensional array

RGB values for each point of the point cloud data, output as either an N-by-3 matrix or h-
by-w-by-3 multidimensional array. N is the number of points. h and w are the height and
width of the image in pixels. The RGB values correspond to the red, green, and blue color
intensities with a range of [0 1].To get the RGB values as a multidimensional array,
select the Preserve point cloud structure check box in the block mask
parameters.
Data Types: double

Intensity — Intensity values for each point
array | matrix

Intensity values for each point of the point cloud data, output as either an array or a h-
by-w matrix. h and w are the height and width of the image in pixels. To get the intensity
values as a matrix, select the Preserve point cloud structure check box in the
block mask paramerters.
Data Types: single

ErrorCode — Error code for image conversion
scalar

 Read Point Cloud

4-25

Error code for image conversion, returned as a scalar. The error code values are:

• 0 – Successfully converted the point cloud message.
• 1 – The dimensions of the incoming point cloud exceed the limits set in Maximum

point cloud size.
• 2 – One of the variable-length arrays in the incoming message was truncated. See

“Managing Array Sizes in Simulink ROS” to increase the maximum length of the
array.

• 3 – The X, Y, or Z field of the point cloud message is missing.
• 4 –The point cloud does not contain any RGB color data. You must have toggled Show

RGB output port to on to get this error .
• 5 –The point cloud does not contain any intensity data. You must have toggled Show

Intensity output port to on to get this error.
• 6 – The X, Y, or Z field of the point cloud message does not have the correct data type

(float32).
• 7 – The RGB field of the point cloud message does not have the correct data type

(float32).
• 8 – The Intensity field of the point cloud message does not have the correct data

type (float32).

For certain error codes, data is truncated or populated with NaN values where
appropriate.
Data Types: uint8

Parameters
Maximum point cloud size — Maximum point cloud image size
[480 640] (default) | two-element vector

Maximum point cloud image size, specified as a two-element [height width] vector.

Click Configure using ROS ... to set this parameter automatically using an active topic
on a ROS network. You must be connected to the ROS network.

Preserve point cloud structure — Preserve point cloud data output shape
off (default) | on

4 Blocks — Alphabetical List

4-26

When this check box is selected, the cloud data output shape for XYZ, RGB, and
Intensity are preserved. The outputs maintain the structure of the original image.
Therefore, XYZ and RGB are output as multidimensional arrays, and Intensity is
output as a matrix.

Show RGB output port — Toggle RGB port
on (default) | off

Select this check box to get RGB values for each point of the point cloud message from the
RGB port. The RGB data must be supplied by the message.

Show Intensity output port — Toggle Intensity port
off (default) | on

Select this check box to get intensity values for each point of the point cloud message
from the Intensity port. The intensity data must be supplied by the message.

Show error code output port — Toggle ErrorCode port
off (default) | on

Select this check box to monitor errors with the ErrorCode port.

Output variable-size signals — Toggle variable-size signal output
off (default) | on

Select this check box to output variable-size signals. Variable-sized signals should only
be used if the image size is expected to change over time. For more information about
variable sized signals, see “Variable-Size Signal Basics” (Simulink).

Model Examples

See Also
Blank Message | PointCloud2 | Subscribe

Topics
“Managing Array Sizes in Simulink ROS”
“Variable-Size Signal Basics” (Simulink)

 Read Point Cloud

4-27

Introduced in R2017b

4 Blocks — Alphabetical List

4-28

Set Parameter
Set values on ROS parameter server
Library: Robotics System Toolbox / ROS

Description
The Set Parameter block sets the Value input to the specified name on the ROS
parameter server. The block uses the ROS node of the Simulink model to connect to the
ROS network. This node is created when you run the model and is deleted when the
model terminates. If the model does not have a node, the block creates one.

Input/Output Ports

Input
Value — Parameter value
scalar | logical | uint8 array

Parameter value from the ROS network. The value depends on the Data type
parameter.

Length — Length of string parameter
integer

Length of the string parameter, specified as an integer. This length is the number of
elements of the uint8 array or the number of characters in the string that you cast to
uint8.

Note When casting your string parameters to uint8, ASCII values 0–31 (control
characters) return an error due to their incompatible character type.

 Set Parameter

4-29

Dependencies

To enable this port, set the Data type to uint8[] (string).

Parameters
Source — Source for specifying the parameter name
Select from ROS network | Specify your own

Source for specifying the parameter name as one of the following:

• Select from ROS network — Use Select to select a parameter name. The Data
type parameter is set automatically. You must be connected to a ROS network.

• Specify your own — Enter a parameter name in Name and specify its data type in
Data type. You must match a parameter name exactly.

Name — Parameter name
string

Parameter name to get from the ROS network, specified as a string. When Source is set
to Select from ROS network, use Select to select an existing parameter. You must
be connected to a ROS network to get a list of parameters. Otherwise, specify the
parameter and data type.

Parameter name strings must follow the rules of ROS graph names. Valid names have
these characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or forward

slashes (/).

Data type — Data type of your parameter
double | int32 | boolean | uint8[] (string)

Data type of your parameter, specified as a string.

Note The uint8[] (string) data type is an array of ASCII values corresponding to
the characters in a string. When getting string parameters, you can create a MATLAB

4 Blocks — Alphabetical List

4-30

Function block to compare the string to a desired parameter value. For more information,
see “ROS String Parameters”.

Data Types: double | int32 | Boolean | uint8

Model Examples

See Also
Get Parameter

External Websites
ROS Parameter Servers
ROS Graph Names

Introduced in R2015b

 Set Parameter

4-31

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Names

Subscribe
Receive messages from ROS network
Library: Robotics System Toolbox / ROS

Description
The Subscribe block creates a Simulink nonvirtual bus that corresponds to the specified
ROS message type. The block uses the node of the Simulink model to create a ROS
subscriber for a specific topic. This node is created when the model runs and is deleted
when the model terminates. If the model does not have a node, the block creates one.

On each sample hit, the block checks if a new message is available on the specific topic. If
a new message is available, the block retrieves the message and converts it to a Simulink
bus signal. The Msg port outputs this new message. If a new message is not available,
Msg outputs the last received ROS message. If a message has not been received since the
start of the simulation, Msg outputs a blank message.

Input/Output Ports

Output

IsNew — New message indicator
0 | 1

New message indicator, returned as a logical. If the output is 1, then a new message was
received since the last sample hit. This output can be used to trigger subsystems for
processing new messages received in the ROS network.

Msg — ROS message
nonvirtual bus

4 Blocks — Alphabetical List

4-32

ROS message, returned as a nonvirtual bus. The type of ROS message is specified in the
Message type parameter.
Data Types: bus

Parameters
Topic source — Source for specifying topic name
Select from ROS network | Specify your own

Source for specifying the topic name, specified as one of the following:

• Select from ROS network — Use Select to select a topic name. The Topic and
Message type parameters are set automatically. You must be connected to a ROS
network.

• Specify your own — Enter a topic name in Topic and specify its message type in
Message type. You must match a topic name exactly.

Topic — Topic name to subscribe to
string

Topic name to subscribe to, specified as a string. When Topic source is set to Select
from ROS network, use Select to select a topic from the ROS network. You must be
connected to a ROS network to get a list of topics. Otherwise, set Topic source to
Specify your own and specify the topic you want.

Message type — ROS message type
string

ROS message type, specified as a string. Use Select to select from a full list of supported
ROS messages. Service message types are not supported and are not included in the list.

Sample time — Interval between outputs
–1 (default) | scalar

Interval between outputs, specified as a scalar. In simulation, the sample time follows
simulation time and not actual wall-block time.

This default value indicates that the block sample time is inherited.

 Subscribe

4-33

For more information about the inherited sample time type, see “Specify Sample Time”
(Simulink).

Length of subscribe callback queue — Message queue length
1 (default) | integer

Message queue length in code generation, specified as an integer. In simulation, the
message queue is always 1.

Model Examples

Tips
You can also set the addresses for the ROS master and node host by clicking the
Configure network addresses link in the block.

See Also
Blank Message | Publish

Topics
“Virtual and Nonvirtual Buses” (Simulink)
“Simulink and ROS Interaction”

Introduced in R2015a

4 Blocks — Alphabetical List

4-34

Vector Field Histogram
Avoid obstacles using vector field histogram
Library: Robotics System Toolbox / Mobile Robot Algorithms

Description
The Vector Field Histogram (VFH) block enables your robot to avoid obstacles based on
range sensor data. Given a range sensor reading in terms of ranges and angles, and a
target direction to drive toward, the VFH controller computes an obstacle-free steering
direction.

For more information on the algorithm details, see “Vector Field Histogram” on page 4-
39 under Algorithms.

Limitations
• The Ranges and Angles inputs are limited to 4000 elements when generating code

for models that use this block.

Input/Output Ports

Input

Ranges — Range values from scan data
vector of scalars

 Vector Field Histogram

4-35

Range values from scan data, specified as a vector of scalars in meters. These range
values are distances from a sensor at specified angles. The vector must be the same
length as the corresponding Angles vector.

Angles — Angle values from scan data
vector of scalars

Angle values from scan data, specified as a vector of scalars in radians. These angle
values are the specific angles of the specified ranges. The vector must be the same length
as the corresponding Ranges vector.

TargetDir — Target direction for robot
scalar

Target direction for the robot, specified as a scalar in radians. The forward direction of
the robot is considered zero radians, with positive angles measured counterclockwise.
You can use the TargetDir output from the Pure Pursuit block when generating controls
from a set of waypoints.

Output
steeringDir — Steering direction for robot
scalar

Steering direction for the robot, specified as a scalar in radians. This obstacle-free
direction is calculated based on the VFH+ algorithm. The forward direction of the robot is
considered zero radians, with positive angles measured counterclockwise.

Parameters
Main

Number of angular sectors — Number of bins used to create the histograms
180 (default) | scalar

Number of bins used to create the histograms, specfieid as a scalar. This parameter is
nontunable. You can set this parameter only when the object is initialized.

Range distance limits (m) — Limits for range readings
[0.05 2] (default) | two-element vector of scalars

4 Blocks — Alphabetical List

4-36

Limits for range readings in meters, specified as a two-element vector of scalars. The
range readings specified in the step function are considered only if they fall within the
distance limits. Use the lower distance limit to ignore false positives from poor sensor
performance at lower ranges. Use the upper limit to ignore obstacles that are too far
away from the robot.

Histrogram thresholds — Thresholds for computing binary histogram
[3 10] (default) | two-element vector of scalars

Thresholds for computing binary histogram, specified as a two-element vector of scalars.
The algorithm uses these thresholds to compute the binary histogram from the polar
obstacle density. Polar obstacle density values higher than the upper threshold are
represented as occupied space (1) in the binary histogram. Values smaller than the lower
threshold are represented as free space (0). Values that fall between the limits are set to
the values of a previous computed binary histogram if one exists from previous
iterations. If a previous histrogram does not exist, the value is set as free space (0).

Robot radius (m) — Radius of the robot
0.1 (default) | scalar

Radius of the robot, specified as a scalar in meters. This dimension defines the smallest
circle that can circumscribe your robot. The robot radius is used to account for robot size
when computing the obstacle-free direction.

Safety distance (m) — Safety distance around the robot
0.1 (default) | scalar

Safety distance left around the robot position in addiction to Robot radius, specified as
a scalar in meters. The robot radius and safety distance are used to compute the obstacle-
free direction.

Minimum turning radius (m) — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius for the robot moving at its current speed, specified as a scalar
in meters.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for

 Vector Field Histogram

4-37

subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution — Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Cost Function Weights

Target direction weight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a scalar. To
follow a target direction, set this weight to be higher than the sum of Current direction
weight and Previous direction weight. To ignore the target direction cost, set this
weight to 0.

Current direction weight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the robot in the current heading direction, specified as a
scalar. Higher values of this weight produce efficient paths. To ignore the current
direction cost, set this weight to 0.

Previous direction weight — Cost function weight for previous direction
2 (default) | scalar

Cost function weight for moving in the previously selected steering direction, specified as
a scalar. Higher values of this weight produce smoother paths. To ignore the previous
direction cost, set this weight to 0.

4 Blocks — Alphabetical List

4-38

Model Examples

Algorithms

Vector Field Histogram

The block uses the VFH+ algorithm to compute the obstacle-free direction. First, the
algorithm takes the ranges and angles from range sensor data and builds a polar
histogram for obstacle locations. Then, it uses the input histogram thresholds to
calculate a binary histogram that indicates occupied and free directions. Finally, the
algorithm computes a masked histogram, which is computed from the binary histogram
based on the minimum turning radius of the robot.

The algorithm selects multiple steering directions based on the open space and possible
driving directions. A cost function, with weights corresponding to the previous, current,
and target directions, calculates the cost of different possible directions. The algorithm
then returns an obstacle-free direction with minimal cost. Using the obstacle-free
direction, you can input commands to move your robot in that direction.

To use this block for your own application and environment, you must tune the algorithm
parameters. Parameter values depend on the type of robot, the range sensor, and the
hardware you use. For more information on the VFH algorithm, see “Vector Field
Histogram”.

See Also
Blocks
Publish | Pure Pursuit | Subscribe

Classes
robotics.VectorFieldHistogram

Topics
“Vector Field Histogram”

 Vector Field Histogram

4-39

Introduced in R2016b

4 Blocks — Alphabetical List

4-40

